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Abstract
Reinforced concrete structures must be designed to withstand extreme-case scenarios such
as fires. Therefore, structural engineers are interested to analyze the behavior of reinforced
concrete structures subjected to a combination of mechanical loads and elevated temperatures.
In the present thesis, a practice-oriented engineering mechanics approach is used to describe the
structural behavior of a segment of a subway station subjected to regular service loads and a
moderate fire. This approach combines fundamental concepts of thermo-elasto-mechanics with
beam analysis software. The three-dimensional reinforced concrete structure is idealized as a
frame consisting of straight beams. The rectangular columns are transformed into cylindrical
beams with equivalent extensional stiffness. A series solution based on Bessel functions is newly
derived, in order to the quantify the axisymmetric ingress of heat into the cylindrical columns. For
all other structural elements, solutions for one-dimensional heat conduction in thickness direction
are taken from the literature. The obtained temperature changes of the structural elements are
translated into thermal eigenstrains. They are decomposed into three parts: an eigenstretch
and an eigencurvature of the axis of the structural element, as well as an eigenwarping of its
cross-sections. Corresponding decomposition rules are newly derived for reinforced concrete
members. The derivation combines the Bernoulli-Euler hypothesis, geometric and constitutive
equations of linear thermoelasticity, as well as relations between the axial force and the bending
moment, on the one hand, and the axial stresses, on the other hand. The eigenstretches and
eigencurvatures are constrained at the scale of the statically indeterminate structure. Beam
analysis software is used to study the load carrying behavior of the frame structure subjected
to mechanical loads as well as to thermal eigenstretches and eigencurvatures of all structural
elements. The obtained axial forces and bending moments result in axial stresses which are linear
across the cross-sections. The latter remain plane even under combined mechanical and thermal
loading. Because of this planarity, the eigenwarping-part of the thermal eigenstrains is prevented
at the scale of the cross-sections. This activates self-equilibrated thermal eigenstresses which
are spatially nonlinear across the cross-sections. Total axial stresses are obtained from adding
the thermal eigenstresses to the axial stresses quantified based on the axial forces and bending
moments. The total stresses agree well with the results of a three-dimensional thermo-elastic
Finite Element simulation. Thus, the engineering mechanics approach is validated. It is found
that half an hour after the start of the analyzed fire, tensile stresses prevail inside the volume of
all structural elements, in the immediate vicinities of their axes. Because the computed tensile
stresses of the columns exceed the tensile strength of concrete, the engineering mechanics model
is extended. A thermo-elasto-brittle approach is used to quantify load redistributions resulting
from internal cracking of the columns. A significant part of the cross-sections of the columns is
considered to fail due to cracking. An updated structural analysis is based on an increased value
of the thermal eigenstretch of the columns and a decreased value of their extensional stiffness.
These two modifications have competing effects. They lead to only insignificant redistributions of
internal forces. It is concluded that tensile cracking is likely to occur unnoticed inside the columns
during the fire, and that the subdivision of the developed engineering mechanics approach into a
sequence of several smaller problems allows for relating causes to effects in a much more clear
and insightful fashion compared to an all-in-one simulation approach such as the Finite Element
Method.





Kurzfassung
Stahlbetonkonstruktionen müssen so bemessen sein, dass sie außergewöhnlichen Lastfällen wie
z. B. einem Feuer widerstehen. Daher interessieren sich Bauingenieur_innen für das Verhalten von
mechanisch und thermisch beanspruchten Stahlbetonkonstruktionen. In der vorliegenden Arbeit
wird ein ingenieurmechanisches Modell entwickelt, um das Strukturverhalten eines Segments einer
U-Bahn-Station unter mechanischen Gebrauchslasten und einer moderaten Feuerlast zu analysie-
ren. Dazu werden grundlegende Konzepte der Thermoelastizität mit einer Stabstatiksoftware
kombiniert. Die dreidimensionale Stahlbetonstruktur wird als dreizelliger Rahmen bestehend aus
geraden Stäben idealisiert. Die rechteckigen Stützen werden in zylindrische Stäbe mit gleicher
Dehnsteifigkeit transformiert. Eine Reihenlösung basierend auf Bessel Funktionen wird hergeleitet,
um den axialsymmetrischen Wärmeeintritt in die zylindrischen Säulen zu quantifizieren. Für die
anderen Strukturelemente werden Lösungen für eindimensionale Wärmeleitung in Dickenrichtung
aus der Literatur entnommen. Die berechneten Temperaturänderungen der Strukturelemente
werden in thermische Eigendehnungen übersetzt und in drei Teile zerlegt: eine Eigenstreckung und
eine Eigenkrümmung der Achse der Strukturelemente sowie eine Eigenverwölbung der Querschnit-
te. Entsprechende Regeln für diese Aufteilung werden für Stahlbeton-Elemente hergeleitet, wobei
die Annahme vom Ebenbleiben der Querschnitte, geometrische und konstitutive Gleichungen
der linearen Thermoelastizitätstheorie sowie die Beziehungen zwischen der Normalkraft bzw.
dem Biegemoment und den axialen Normalspannungen eingehen. Die Eigenstreckungen und
Eigenkrümmungen sind auf der Skala der statisch unbestimmten Struktur behindert. Mit einer
Stabstatiksoftware wird das Tragverhalten des Rahmens unter mechanischen Belastungen sowie
thermischen Eigenstreckungen und Eigenkrümmungen untersucht. Die berechneten Normalkräf-
te und Biegemomente führen zu axialen Normalspannungen, die über die Querschnitte linear
verlaufen. Letztere bleiben auch unter kombinierter mechanischer und thermischer Belastung
eben. Daher ist der Eigenverwölbungsanteil der thermischen Eigendehnungen auf der Skala der
Querschnitte verhindert. Dies aktiviert thermische Eigenspannungen, die über die Querschnitte
nichtlinear verlaufen und eine Gleichgewichtsgruppe darstellen. Die axialen Gesamtspannungen
ergeben sich als Summe der thermischen Eigenspannungen und der Normalspannungen zufolge
Normalkraft und Biegemoment. Die Gesamtspannungen stimmen gut mit den Ergebnissen einer
dreidimensionalen thermoelastischen Finite Elemente Simulation überein. Somit ist das ingenieur-
mechanische Modell validiert. Die Berechnungsergebnisse verdeutlichen, dass eine halbe Stunde
nach Beginn des analysierten Feuers Zugspannungen im Volumen aller Strukturelemente auftreten.
Da die berechneten Zugspannungen der Stützen die Zugfestigkeit von Beton überschreiten, wird
das ingenieurmechanische Modell erweitert. Es werden jene Lastumverteilungen quantifiziert, die
sich aus sprödem Zugrisswachstum in Inneren der Säulen ergeben. Dabei wird berücksichtigt, dass
wesentliche Teile der Querschnitte der Säulen versagen. Eine aktualisierte Strukturanalyse basiert
auf einem erhöhten Wert der thermischen Eigenstreckung der Säulen und einem verringerten
Wert ihrer Dehnsteifigkeit. Diese beiden Modifikationen haben entgegenwirkende Effekte. Sie
führen zu nur unbedeutenden Lastumverteilungen. Somit wird der Schluss gezogen, dass Zugrisse
in den Säulen während des Brandes wahrscheinlich unbemerkt auftreten. Das entwickelte inge-
nieurmechanische Modell ermöglicht es aufgrund seiner Gliederung in mehrere kleinere Probleme,
Ursachen und Effekten viel klarer und aufschlussreicher in Beziehung zu setzen als das mit einem
einstufigen Simulationsansatz wie der Finite Elemente Methode möglich ist.
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Chapter 1

Introduction
Reinforced concrete is the most commonly used and one of the most widely investigated con-
struction materials in the world. Structural engineers are interested in the load-carrying behavior
of reinforced concrete structures. The development of appropriate models that reliably and
efficiently predict their behavior when subjected to a combination of elevated temperatures and
mechanical loads, however, remains a challenge.

Investigations in this area can be separated into two main fields of research, which are very
often found in combination with each other: experimental investigations based on large-scale
tests, and numerical simulations involving either the full complexity of a full-scale test, or a
simplified, practice-oriented analysis of specific elements of a structure. As regards experimental
campaigns, Vecchio and Sato performed three large scale tests to reinforced concrete frames
subjected to a combination of mechanical loads and controlled thermal loads specified at the
inner surface of the frame [30]. Ring et al. performed a large-scale fire test on an underground
concrete frame structure [23], the results of which were used for the elaboration and validation of
numerical Finite Element simulations [24]. Kamath et al. conducted a full-scale fire test on a
reinforced concrete frame, which was first subjected to simulated seismic damage to investigate
the material behavior of reinforced concrete due to fire following an earthquake [19]. Recently,
Lu et al. performed a large-scale fire test on a segment of a subway station [21].

Regarding purely numerical simulations, thermo-mechanical three-dimensional Finite Element
(FE) simulations have been performed on reinforced concrete beams [1, 15, 22, 26, 32], and
columns [3, 32] subjected to elevated temperatures. Diaz et al. modeled, by means of three-
dimensional FE simulations, the structural behavior of an underground frame structure subjected
to the first 30 minutes of the fire test presented in [21], representative of a moderate fire scenario
[7]. Simplified methods have also been developed in order to optimize the computational power
required by complex FE simulations that attempt to reproduce fire scenarios. In this context,
simple numerical models have been developed to analyze the response of reinforced concrete
frames [29], the resistance of reinforced beams [4, 9, 20], and of cylindrical columns [14], even
using “transformed” cross-sections in order to analyze and design reinforced concrete columns
as a cross-section with uniform material properties [5, 28]. El-Fitiany and Youssef presented a
simplified method to calculate internal compression forces and corresponding moments for heated
concrete structures that can be easily applied using available commercial linear structural analysis
software to predict the fire performance of reinforced concrete structures [10–13]. El-Tayeb et al.
gave a more intuitive insight into the effect of thermal loads on reinforced concrete structures by
separating the temperature distribution into a uniform, a linear and a non-linear contribution,
and described the importance of the non-linear part, exclusive of transient thermal conditions
[27]. Wang et al. further advanced this method by introducing a semi-analytical solution which
determines the non-linear thermal stresses developed by concrete pavements due by temperature
changes on the top surface in transient thermal conditions [31]. This approach was specialized
for slender beams with homogeneous material behavior [2, 17]. Finally, Schmid then extended
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this solution for concrete pavements with temperature changes on both, the top and bottom
surface [25].

The present study attempts to describe the structural behavior of the segment of a subway
station presented in [7, 21] subjected to a moderate fire scenario, as described in [7], by means
of an inexpensive, practice-oriented model that combines the use of inexpensive beam models
and thermo-elasto-mechanics fundamentals. This simulation is organized in five steps. The first
one refers to the idealization of the originally three-dimensional structure into a frame structure
with one-dimensional beam elements, where the Euler-Bernoulli beam theory is applicable. In
order to consider the reinforcement of the structure and its mechanical properties, the initially
non-uniform cross section is transformed into an equivalent cross-section with uniform properties.
The second step refers to the solution of the transient heat conduction problem. Semi-analytical
solutions to the one-dimensional heat conduction problems are used in order to predict the
temperature field inside the whole reinforced concrete structure. Notably, the transformation
of initially rectangular columns into equivalent cylindrical ones exhibiting the same extensional
stiffness allows for a prediction of the temperature field inside the columns to be made based on
an axisymmetric temperature problem that can be solved semi-analytically. The third step refers
to the quantification of the thermal stress contributions, based on a thermo-elasto-mechanics
analysis and the semi-analytical solutions of the heat conduction problems. Herein, it must
be determined whether the eigenstrains developed by each cross-section are free to develop,
constrained, or prevented. This is determined partly at the larger, structural level, and partly
at the smaller, cross-sectional level. At the structural level, thermal stresses occur due to the
constraints imposed by the boundary conditions of the structure onto the development of the
thermal eigenstretch and eigencurvature. At the cross-sectional level, thermal stresses develop
due to the Euler-Bernoulli assumption that plane sections remain plane, which thus prevents the
development of a spatially nonlinear, self-equilibrated eigenwarping of the cross-section. The
fourth step refers to the use of the beam analysis software RStab [8] in order to predict the
internal forces resulting by the combination of the mechanical loading that represents the service
conditions of the structure, and the thermal loading resulting from the moderate fire. The fifth
and last step refers to the superposition of the stresses resulting from both load cases and the
self-equilibrated, nonlinear part of the thermal stresses, resulting from prevented eigenwarping of
the cross-section.

The present master thesis is organized as follows. Chapter 2 refers to the prerequisites for
this study, including a brief description and essential results of the scaled fire test and the
FE simulation of the reinforced concrete structure as documented in [7]. Chapter 3 refers to
the engineering mechanics analysis pushed forward in this thesis. In Chapter 4, the results
of the engineering mechanics analysis are compared with those from the FE simulation. The
thermo-elastic mode analysis is extended to an thermo-elasto-brittle mode, accounting for tensile
cracking of concrete in the core regions of the columns. Chapter 5 contains the summary and
the conclusions drawn from the present study.



Chapter 2

Prerequisites for the present study

2.1 Results from a scaled fire test
A scaled fire test was performed [21] on a structure inspired by the upper floor of a three-span,
two-floor reinforced concrete frame, commonly used in underground stations in China. The
motivation to perform the test, was to identify the temperature at the inner surface as well as the
temperature histories and strains inside the structure. The tested structure was placed sidelong
on top of a furnace and closed with a fire-resistant cover. A frame of steel with hydraulic presses
and supports was located around the model to simulate service conditions, see Fig. 2.1. The

Fig. 2.1: Setup of the large-scale fire test [7, 21].

real structure described in [7] was tested at a scale of 1:4 with a width of 5260 mm, a height
of 1880 mm, and an axial length of 1200 mm, see Fig. 2.2a. Because of the distance between
neighboring columns in axial direction, the cross-section of the columns of the tested structure
were scaled by 1:5, see [7] for details. The cross-section of the columns for the scaled fire test
are illustrated in Fig. 2.2a. The reinforcement of each element of the structure was scaled by
using the same reinforcement ratio as the structure at real scale. This leads to the reinforcement
drawing of the tested structure [7], see Fig. 2.2b. The structure was produced with normal
concrete “C40”, with a mass density of 2373 kg/m3 and a concrete cover of 30 mm. Before the
concrete was cast, the temperature and strain sensors at the slabs and walls were installed. At
the top slab in the right cell and the right wall, temperature sensors were located at minimum
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(a)

(b)

Fig. 2.2: (a) Geometric dimensions of the tested structure, and (b) reinforcement drawing.

cover depth amounted to 2 mm only. During the first 1800 s of heating the inner surface, the
temperature of the outer surface was constant. The temperature sensors recorded entries at
intervals of 20 s. Thus, the first 1800 s of the fire test were documented by 90 readings of each
sensor.

2.2 Results from Finite Element simulations
Based on the scaled fire test, the structure was simulated by means of three-dimensional, non-
stationary Finite Element (FE) simulations using the commercial software Abaqus FEA 2016.
The mesh consisted of 139,040 linear hexahedral brick finite elements, with eight nodes and one
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temperature degree of freedom per node, see Fig. 2.3. These elements are referred to as “DC3D8”
by ABAQUS CAE [6]. The characteristic size of the finite elements amounted to 30 mm [7].
Fig. 2.4 illustrates the idealized geometric boundary conditions and their locations as well as the

Fig. 2.3: Three-dimensional FE mesh of the analyzed structure [7].

locations of the point loads P1, P2, and P3, that represent the hydraulic presses. The magnitudes
of the point loads are presented in Table 2.1. Because of the definition of the stiffness matrices of
FE, point loads are idealized as surface stresses with high intensity and small finite area. Given

Fig. 2.4: Support and loading conditions of the tested structure [7].

that the thermal properties of the tested structure were unknown, the values of the specific heat
capacity and the thermal conductivity were estimated in accordance with building codes and
scientific studies, see Table 2.2. According to the insights in [7], the temperature change at the
steel bars may be assumed to be equal to that of the concrete at its immediate vicinity. Thus,
this thermal simulation of the structure depends on the thermal properties of concrete only. For
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Tab. 2.1: Intensities of the point loads imposed on the structure in order to simulate service
conditions [7].

P1 P2 P3

Loadings [kN] 192.0 151.2 120.0

Tab. 2.2: Thermal properties of concrete [7].

Property Value
Specific heat capacity [J/kgK] 900
Thermal conductivity [W/mK] 1.6

the thermo-mechanical analysis, the steel needs to be taken into account. The reinforcement were
modeled as one-dimensional truss elements. The values of specific properties of concrete and
steel, defined in [7], were assigned to the corresponding elements, see Table 2.3. In order to limit
the complexity of the model, the reinforcement were overlain to the concrete. The properties in
Table 2.3 are representative for elastic material behavior at room temperature. For simulation of

Tab. 2.3: Mechanical properties of concrete and steel [7].

Property concrete steel
Modulus of elasticity [GPa] 33.4 195
Poisson’s ratio [-] 0.2 0.3
Thermal expansion coefficient [◦C−1] 9.03 × 10−6 12.2 × 10−6

non-stationary heat conduction with ABAQUS CAE [6] the temperature data of the scaled fire
test described in Section 2.1 and [7] was used to approximate the temperature histories at the
inner surface of the top slab and the right wall in a first step of the analysis. At the columns
there was a temperature sensor at the middle of the cross-section only. Thus, the temperature
evolution at the outer surface of the columns was simulated by fitting the prescribed temperature
histories of the top slab; for detail see [7]. In addition to the location of the measurements
near the surface, the structure was subdivided into three sub-regions with piecewise uniform
temperature histories:

1. The slabs were subjected to the temperature history, measured at the midspan of the right
cell of the top slab, at depth of 2 mm from the inner surface, see Fig 2.5a.

2. The walls were subjected to the temperature history, measured at the midspan of the right
cell of the top slab, at depth of 2 mm from the inner surface, see Fig. 2.5b.

3. The columns were subjected to the temperature history, measured at the midspan of the
right cell of the top slab, at depth of 2 mm from the inner surface, scaled by a fitting-factor,
see Fig. 2.5c.

This temperature histories were used to simulate the boundary conditions of heat conduction for
the FE analysis with ABAQUS CAE [6], documented in [7].

The thermo-mechanical results of the FE simulation were evaluated at selected sections of the
structure, representing the stress component σxx of Cauchy’s stress tensor at the mid-plane in
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Fig. 2.5: Temporal evolution of temperature changes at the surfaces of the structural elements,
discretized in 90 readings: (a) slabs, (b) walls, and (c) columns.

axial direction. The linear shape-functions of the chosen elements yield element-wise constant
stresses. In Chapter 4 the described stress distributions of the FE simulation are illustrated as
dashed lines, see Figs. 4.7 - 4.18.



Chapter 3

Engineering mechanics analysis
In the following, a simplified engineering mechanics analysis of the scaled fire test described in
Chapter 2 is performed using a beam analysis software under the assumption of the first-order
beam theory. The results are then compared with the ones obtained from three-dimensional FE
simulations. For this analysis, all structural elements are idealized as beams. Thus, the slabs
and walls of the structure will be simulated as prismatic beams. Because of the geometry of the
plates and the constant temperature at the outer surface, the generally three-dimensional heat
conduction problem may be approximated as a one-dimensional heat conduction in thickness
direction. The prismatic columns, located in the mid-plane of the structure, are thermally
loaded on all four lateral surfaces. To reduce the two-dimensional heat conduction problem to
a one-dimensional one, the prismatic columns will be transformed into cylindrical ones. This
provides the motivation for solving both, one-dimensional heat conduction in thickness direction of
prismatic beams and radial heat conduction in axisymmetric cylindrical columns. The prismatic
beams are defined as structures with doubly-symmetric cross-sections in a Cartesian coordinate
system with origin at the axis of the beam. The cylindrical columns are defined as structures with
axisymmetric cross-sections. In order to consider the reinforcement of concrete, a non-uniform
modulus of elasticity E(y, z) and thermal expansion coefficient αT (y, z) are considered at a cross-
sectional scale in Section 3.2. They are represented as equivalent “transformed” cross-section.
Axial stresses result from the mechanical loading, from the boundary-conditions-dependent
constraint of the thermal eigenstretch and eigencurvature of the axis of the beam, and from the
thermal eigenwarping of the cross-section of the beam, which is prevented at a cross-sectional
level as a consequence of the assumption that plane sections remain plane. The total stresses then
are calculated as a superposition of these cases. In Section 3.3 the simulation with beam analysis
software at structural scale will be performed. The results of the thermo-elasto-mechanics are
discussed in Chapter 4.

3.1 Semi-analytic solutions of the heat conduction problem
The general form of the heat equation for the case of a three-dimensional heat conduction problem
is given as [18]

ρ c Ṫ − ∇ · (K · ∇T ) = 0 , (3.1)

where ρ is the mass density, c is the specific heat capacity, K is the second order tensor of
thermal conductivity, ∇ is the nabla operator. The thermal conductivity in the case of isotropic
heat conduction properties is defined as K = K · I with the second order identity tensor defined
as I = 3

i=1 ei ⊗ ei. Thus, the heat conduction problem in Eq. (3.1) reads as

Ṫ − a ∇ · (I · ∇T ) = 0 with a = K

ρc
, (3.2)
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where a denotes the thermal diffusivity. The partial differential equation (3.2) will be solved
for one-dimensional heat conduction in thickness direction of prismatic beams and radial heat
conduction of cylindrical columns with time-dependent boundary conditions at the surfaces
according to the temperature histories, see Fig. 2.5. At the beginning, the temperature at
the surface is equal to a reference temperature Tref . This yields a constant initial condition
for solving the heat conduction problem. Because of the linearity of the partial differential
equation (3.2), the superposition principle applies and the time-dependent boundary conditions
in temperature can be discretized in N temperature increments ΔTk with time-independent
boundary conditions at the surfaces, where k = 1, 2, ..., NT , see Fig. 3.1. This can be used to
create elementary solutions at each temperature increment ΔTk that can be superimposed to
a semi-analytical solution for the given boundary conditions. In this context, the temperature
increments are defined as:

T (t0) = Tref initial condition, (3.3)

ΔTk = T (tk) − T (tk−1) constant boundary condition at
the surface for one time increment. (3.4)

where tk is the time of the next temperature increment and tk−1 the time of the increment
before. The difference between tk and tk−1 of Eq. (3.4) is the time step between the temperature
measurements of the tested structure, see Fig. 3.1.

Fig. 3.1: Thermal boundary conditions of the structural elements: approximation of a continuous
temperature evolution in a step-wise fashion [17, 31].

3.1.1 One-dimensional heat conduction in thickness direction of prismatic beams
Specification of the heat equation (3.2) for a Cartesian coordinate system and one-dimensional
heat conduction in thickness direction z with temperature T = T (z, t) and thermal diffusivity a,
yields:

∂T

∂t
− a

∂2T

∂z2 = 0 . (3.5)

At the beginning (t = 0) the temperature of the prismatic beam is equal to the reference
temperature Tref . On each time step tk with k = 1, 2, ...NT , where NT is the total number of
temperature increments, the temperature of the bottom surface of the beam T bot is constant and
depends on the temperature histories as presented in Fig. 2.5a and 2.5b. It is assumed that the
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heat flux across the lateral surfaces is equal to zero and the one-dimensional heat equation (3.5) is
applicable. The temperature of the top surface is equal to Tref . In this case the initial condition
and the boundary conditions can be written as:

T (z, t = 0) = Tref initial condition, (3.6)
T (z = −h

2 , t) = Tref

T (z = +h
2 , t) = T bot(t)

 boundary conditions. (3.7)

The solution of the one-dimensional heat equation (3.5) for one temperature increment prescribed
on the top surface ΔT top and constant temperature at the bottom surface of the structure is
documented in the literature, e.g., [2]. Reversing the positive direction of the z axis and inserting
ΔT bot instead of ΔT top in the solution [2, 31] yields the distribution of the temperature for one
temperature increment prescribed on the bottom surface. Summation of the elementary solutions
of N temperature increments on the bottom surface of prismatic beams reads as

ΔT (z, t) =
NT

k=1
ΔT bot

k

1
2 + z

h

+
∞

n=1
exp −(2n − 1)2π2a t − tk

h2
2ΔT bot

k (−1)n

(2n − 1)π cos −(2n − 1)π z

h
(3.8)

−
∞

n=1
exp −(2nπ)2a t − tk

h2
ΔT bot

k (−1)n

nπ
sin −2nπ

z

h
,

where h is the height of the cross-section and the angled brackets denote the Macaulay operator:

t − tk := 1
2 (t − tk + |t − tk|) . (3.9)

In Eq. (3.8), the temperature difference ΔT bot
k denotes the boundary condition at temperature

increment k, see Fig. 3.1 and Eq. (3.4).

3.1.2 Radial heat conduction in axisymmetric cylindrical columns
Specification of the heat equation (3.2) for a cylindrical coordinate system with spatially uniform
boundary conditions at the lateral surface delivers an axisymmetric heat conduction problem
where the temperature T = T (r, t), yielding a partial differential equation with variable coefficients,
also known as Bessel differential equation [16], which reads as

∂T

∂t
− a

∂2T

∂r2 + 1
r

∂T

∂r
= 0 . (3.10)

At the beginning (t = 0), the temperature of the cylindrical column is equal to the reference
temperature Tref . On each time step tk with k = 1, 2, ...NT , where NT is the total number of
temperature steps, the temperature of the lateral surface of the column T lat is constant (Fig. 3.1)
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and depends on the temperature history as presented in Fig. 2.5c. In this case, the initial
condition and the boundary condition can be written as:

T (r, t = 0) = Tref initial condition, (3.11)
T (r = R, t) = T lat(t) boundary condition. (3.12)

The solution of the radial heat conduction problem in Eq. (3.10) for one temperature increment
prescribed on the lateral surface ΔT lat

k of the structure as defined in Eq. (3.4) is documented
in Appendix A. Summation of the elementary solutions of NT temperature increments on the
lateral surface of cylindrical columns and subtracting the reference temperature Tref reads as

ΔT (r, t) = ΔT lat +
NT

k=1

2(Tref − ΔT lat
k )

R

∞

n=1

J0(λnr)
J1(λnR)λn

exp(−λ2
na t − tk ) , (3.13)

where ΔT lat denotes the total temperature change on the lateral surface, defined as the summation
of all temperature increments ΔT lat

k in Eq. (3.4). J0 and J1 denote the Bessel functions of the
first kind with their eigenvalues λn, R denotes the radius of the column and the angled brackets
denote the Macauley operator defined in Eq. (3.9).

3.2 Engineering Mechanics modeling at cross-sectional scale
3.2.1 Engineering thermo-elasto-mechanics of reinforced concrete beams
The thermal eigenstrains, εe, developed at the points y and z inside the cross-section of a
beam, see Fig. 3.2, are equal to the thermal expansion coefficient evaluated at those points,
αT = αT (y, z), multiplied with the change of temperature, measured relative to the reference
configuration, ΔT (z, t) = T (z, t) − Tref , as

εe
xx = εe

yy = εe
zz = αT ΔT . (3.14)

ℓ ℓ

h

xy

r
ϕ

z
D

=

z

xy y

z

ϕ

b

x

r

Fig. 3.2: Local coordinate systems describing positions inside and at the boundary of the struc-
tural elements: x denotes the longitudinal axis; y and z denote Cartesian coordinates
of the cross-section; r and ϕ denote cylindrical coordinates.

In a transient heat conduction problem, the thermal eigenstrains are spatially nonlinear along
the thickness direction, see e.g., [17, 25, 31]. When it comes to the quantification of thermal
stresses, the question must be answered whether the eigenstrains are free to develop, constrained,
or prevented. This question is answered partly at the larger, structural level, and partly at the
smaller, cross-sectional level. To this end, the spatially nonlinear eigenstrains are subdivided
into three parts. They refer to an eigenstretch of the beam, an eigencurvature of the beam, and
an eigenwarping of the cross-section. The eigenstretch and the eigencurvature of the axis of the
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beam cause axial stresses depending on the boundary conditions that constrain the deformation
of the structure. On the other hand, the assumption that plane sections remain plane means that
the eigenwarping of the cross-section of the beam is prevented, thus always resulting in nonlinear
thermal stresses. Herein, we focus on doubly-symmetric cross-sections with non-uniform modulus
of elasticity and thermal expansion coefficient, E(y, z) and αT (y, z), respectively, assuming a
coordinate system with origin at the axis of the beam, see Fig. 3.2. This yields

A

E z dA = 0 . (3.15)

The first step refers to the kinematics of the Euler-Bernoulli theory for slender beams:

u = u0 − ∂w0
∂x

z , (3.16)

where u denotes the displacement components in x-direction, at any point within the volume of
the beam. u0 and w0 denote the displacement components at the axis of the beam. Eq. (3.16)
essentially describes that cross-sections remain plane and normal to the deformed axis of the
beam, also in the deformed configuration (= Euler-Bernoulli hypothesis).

The second step refers to (“total”) axial strain component εxx of the linearized strain tensor.
It is defined as

εxx = ∂u

∂x
. (3.17)

Inserting Eq. (3.16) into Eq. (3.17) yields

εxx = ∂u0
∂x

− ∂2w0
∂x2 z . (3.18)

Eq. (3.18) is usually reformulated in terms of the stretch of the axis of the beam, ε0 = ∂u0/∂x,
and its curvature, κ0 = −∂2w0/∂x2. This yields

εxx = ε0 + κ0 z . (3.19)

The third step refers to axial stress component σxx of Cauchy’s stress tensor. In thermoelasticity,
it reads as

σxx = E (εxx − εe
xx) . (3.20)

Inserting Eqs. (3.14) and (3.19) into (3.20) yields

σxx = E ε0 + κ0 z − αT ΔT , (3.21)

where the modulus of elasticity is a function of the y- and z-coordinates which describe points
inside the cross-sections of the beam, i.e. E = E(y, z).

The fourth step refers to axial force N . It is energetically conjugate to the displacements u0
and read as

N =
A

σxx dA . (3.22)
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Inserting Eq. (3.21) into (3.22) yields under consideration of (3.15):

N =
A

E ε0 + κ0 z − αT ΔT dA ,

=
A

E dA

EA

ε0 −
A

E αT ΔT dA

EA εe
0

,

= EA ε0 − εe
0 . (3.23)

Eq. (3.23) is the motivation to introduce the effective extensional stiffness of the beam as

EA =
A

E dA . (3.24)

In the case of a reinforced concrete beam, EA can be rewritten as

A

E dA =
Ac

Ec dA +
As

Es dA ,

= EcAc + Ec
Es

Ec

nE

L

j=1
As,j ,

= Ec Ac + nE

L

j=1
As,j

Atr

, (3.25)

where nE refers to the ratio between the modulus of elasticity of steel, Es, and concrete, Ec, j
refers to each one of the L individual reinforcement bars existing within the cross-section, and
Atr = Ac + nE

L
j=1 As,j refers to the total area of the “transformed” section with Ac denotes

the area of concrete and As denotes the area of steel. Thus, one can conclude from Eq. (3.23)
that the eigenstretch of the axis of the beam is calculated as

εe
0 = 1

EA
A

E αT ΔT dA , (3.26)
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which in case of a concrete beam that presents a constant temperature in each reinforcement bar,
considering Eqs. (3.24) and (3.25), leads to

εe
0 = 1

EA


Ac

Ec αT,c ΔT dA +
L

j=1
Es αT,s ΔTj As,j

 ,

= 1
Ec Atr

Ec


Ac

αT,c ΔT dA + nE

L

j=1
αT,s ΔTj As,j

 ,

= 1
Atr


Ac

αT,c ΔT dA + nE

L

j=1
αT,s ΔTj As,j

 , (3.27)

where αT,c is the thermal expansion of concrete and αT,s is the thermal expansion of steel.
The fifth step refers to bending moment M . It is energetically conjugate to the cross-sectional

rotation ∂w0/∂x and reads as
M =

A

σxx z dA , (3.28)

Inserting Eq. (3.21) into (3.28) yields under consideration of (3.15):

M =
A

E ε0 + κ0 z − αT ΔT z dA ,

=
A

E z2 dA

EI

κ0 −
A

E αT ΔT z dA

EI κe
0

,

= EI κ0 − κe
0 . (3.29)

Eq. (3.29) is the motivation to introduce the effective bending stiffness of the beam as

EI =
A

E z2 dA . (3.30)

In the case of a reinforced concrete beam, EI can be rewritten as

A

E z2 dA =
Ac

Ec z2 dA +
As

Es z2 dA ,

= EcIc + Ec
Es

Ec

nE

L

j=1
As,j z2

j ,

= Ec Ic + nE

L

j=1
As,j z2

s,j

Itr

, (3.31)

where Itr = Ic + nE · L
j=1 As,j z2

s,j refers to the second moment of inertia of the “transformed”
cross section, and zs,j refers to the distance between each individual reinforcement bar and the
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axis of the beam. The eigencurvature of the axis of the beam is calculated according to Eq. (3.29)
as

κe
0 = 1

EI
A

E αT ΔT z dA , (3.32)

which in the case of a reinforced concrete beam that presents a constant temperature within
each reinforcement bar, considering Eqs. (3.31) and (3.32), leads to

κe
0 = 1

EI


Ac

Ec αT,c ΔT z dA +
L

j=1
Es αT,s ΔTj As,j zs,j

 ,

1
Ec Itr

Ec


Ac

αT,c ΔT z dA + nE

L

j=1
αT,s ΔTj As,j zs,j

 ,

= 1
Itr


Ac

αT,c ΔT z dA + nE

L

j=1
αT,s ΔTj As,j zs,j

 . (3.33)

The completed derivation underlines that the spatially nonlinear eigenstrain distribution αT ΔT
can be decomposed into three contributions:

αT ΔT = εe
0 + κe

0 z + εe
w . (3.34)

In Eq. (3.34), εe
0 denotes a spatially constant contribution according to Eq. (3.26), representing

an eigenstretch of the beam; κe
0 z denotes a spatially linear contribution with vanishing mean

value, see Eq. (3.32), representing an eigencurvature of the beam; and εe
w denotes the spatially

non-linear rest of the eigenstrain distribution, representing an eigenwarping of the cross-section
of the beam.

Thermal stresses are derived as follows: Eqs. (3.23) and (3.29), are rearranged as

ε0 = N

EA
+ εe

0 , (3.35)

κ0 = M

EI
+ κe

0 . (3.36)

Inserting Eqs. (3.35) and (3.36) into Eq. (3.21) yields

σxx(y, z) = E(y, z) N

EA
+ εe

0 + M

EI
+ κe

0 z − αT (y, z)ΔT (z)

= N E(y, z)
EA

+ M E(y, z)
EI

z −E(y, z) αT (y, z)ΔT (z) − εe
0 − κe

0 z

σe
w(y,z)

. (3.37)

Thus, thermal stresses resulting from prevented eigenwarping of the cross-sections of the beam
read as

σe
w(y, z) = −E(y, z) αT (y, z)ΔT (z) − εe

0 − κe
0z . (3.38)

The expression in the square brackets of Eq. (3.38) is equal to the nonlinear part of the eigenstrains,
εe

w, see Eq. (3.34).
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3.2.2 Application to prismatic, reinforced concrete beams
Regarding the solution of the one-dimensional heat equation for one temperature increment
prescribed at the top surface ΔT top and constant temperature at the bottom surface of the
structure in [2], the derivation of thermal stresses in prismatic beams with homogeneous material
behavior is documented in [17]. In this case the solution is extended to the material behavior of
reinforced concrete. The mechanical loads are acting in the x-z-plane, resulting in an axial force
N and a bending moment My = M . The total stress to which the concrete is subjected results
from inserting Eqs. (3.25) and (3.31) into Eq. (3.37), yielding

σxx,c(z) = N

Atr
+ M

Itr
z −Ec αT,c ΔT (z) − εe

0 − κe
0 z

σe
w(z)

. (3.39)

Herein, the first term depending on axial force N refers to the influence of the eigenstretches, ε0,
on the total stress, the second term depending on bending moment M refers to the influence
of the eigencurvature, κ0, on the total stress, and the third term refers to the influence of the
prevented eigenwarping on the total stress, see Eq. (3.38). Inserting the solution of the heat
conduction problem of prismatic beams, described in Eq. (3.8) into Eq. (3.27) and (3.33) leads
to the eigenstrain

εe
0 = 1

Atr
Ac

NT

k=1
αT,cΔT bot

k · 1
2 −

∞

n=1
exp −(2n − 1)2π2a t − tk

h2
4

(2n − 1)2π2 (3.40)

+ nE αT,s

L

j=1
ΔTjAs,j ,

and the eigencurvature of a prismatic reinforced concrete beam

κe
0 = 1

Itr
−Ic

NT

k=1
αT,cΔT bot

k

1
h

−
∞

n=1
exp −(2nπ)2a t − tk

h2
6

(nπ)2
1
h

(3.41)

+ nE αT,s

L

j=1
ΔTjAs,j zj .

Thus, the self-equilibrated stresses resulting from prevented eigenwarping of the cross-section
of a prismatic, reinforced concrete beam as defined in the expression in the square brackets of
Eq. (3.39) considering Eqs. (3.40) and (3.41) reads, as

σe
w(z) = Ec

NT

k=1
αT,c ΔT bot

k

1
2 1 − Ac

Atr
+ z

h
1 − Ic

Itr
+

∞

n=1

+ exp −(2n − 1)2π2a t − tk

h2
2(−1)n

(2n − 1)π cos −(2n − 1)π z

h
+ Ac

Atr

4
(2n − 1)2π2

− exp −(2nπ)2a t − tk

h2
(−1)n

nπ
sin −2nπ

z

h
− Ic

Itr

6
(nπ)2

z

h

− nE αT,s

L

j=1
ΔTj

As,j

Atr
− As,j

Itr
zs,j z . (3.42)



26 3 Engineering mechanics analysis

3.2.3 Application to cylindrical, reinforced concrete columns
In consideration of the boundary conditions between columns and slabs, both internal forces, the
axial force N and the bending moment M exist. A cylindrical coordinate system with origin
at the axis of the column is suitable for the description of the axisymmetric cross-section. The
transformation of the Cartesian coordinate z to cylindrical coordinates reads as

z = r sin(ϕ) , (3.43)

where r is the radial coordinate with origin at the beam axis and ϕ is the angular coordinate with
respect to the y-axis of a local Cartesian coordinate system, see Fig. 3.2. The total stress to which
the concrete is subjected results from inserting Eqs. (3.43), (3.25) and (3.31) into Eq. (3.37),
yielding

σxx,c(r, ϕ) = N

Atr
+ M

Itr
r sin(ϕ) −Ec αT,cΔT (r) − εe

0

σe
w(r,ϕ)

, (3.44)

where the linear part of the eigenstrains κe
0 is equal to zero, because of the boundary conditions

in temperature of the lateral surface. In this case, the stresses from prevented eigenwarping
depend only on the thermal eigenstretches of the axis. Inserting Eq. (3.13) into Eq. (3.27) yields

εe
0 = αT,c

Ac

Atr
ΔT lat +

NT

k=1

4(Tref − ΔT lat
k )

R2

∞

n=1

1
λ2

n

exp(−λ2
na t − tk ) (3.45)

+ nE αT,s

L

j=1

As,j

Atr
ΔTj .

Thus, the self-equilibrated stresses resulting from prevented eigenwarping of the cross-section of
a cylindrical reinforced concrete column as defined in the expression in the square brackets of
Eq (3.44) considering Eq. (3.45) reads, as

σe
w(r) = Ec αT,c ΔT lat 1 − Ac

Atr

+
NT

k=1

4(Tref − ΔT lat
k )

R2

∞

n=1

1
λn

R

2
J0(λnr)
J1(λnR) − Ac

Atr

1
λn

exp(−λ2
na t − tk )

− nE αT,s

L

j=1

As,j

Atr
ΔTj . (3.46)

Regarding the solution of radial heat conduction in Eq. (3.13), the derivation of thermal stresses
in cylindrical columns is documented in Appendix B.

3.3 Engineering mechanics modeling at the structural scale
In thermoelasticity the internal forces M and N depend on the eigenstretch and eigencurvature
εe

0 and κe
0, see Eqs. (3.23) and (3.29):

N = EA (ε0 − εe
0) , M = EI (κ0 − κe

0) . (3.47)
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In statically determinate structures, the thermal eigenstretches εe
0 and eigencurvatures κe

0 are free
to develop. Thus, there are no internal forces. As a consequence, the total internal forces depend
on the mechanical loading only. In case of a statically indeterminate structure, the boundary
conditions constrain the thermal eigenstretches and eigencurvatures. Corresponding stresses need
to be quantified based on a simulation of the behavior of the whole structure, accounting for its
boundary conditions. The tested structure described in Chapter 2 and [7] will be modeled with
the beam analysis software RStab [8] using first-order beam theory.

In a first step, the three-dimensional FE model produced in Abaqus CAE [6], see Fig. 2.2a and
Fig. 2.4, will be used as a basis in order to build a simplified one-dimensional beam model. For
this purpose, the structure will be idealized as located on the axis of each cross-section. Rigid
connections between the structural elements are assumed. The resulting structure consists of a
three-span frame formed by top slab, bottom slab, and walls with two columns that separate the
cells. In order to perform the simulation as simple as possible and as complex as necessary, the
tapered part of the top slab will not be part of the model. This yields an idealized structure for
the simulation with beam analysis software which is statically indeterminate to the twelfth degree
(n = 12), see Fig. 3.3. The local coordinate system of the frame is defined by the dashed line, see
Fig 3.2. xj , with j = 1, 2, . . . , 12, denotes axial locations at which results will be discussed.
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Fig. 3.3: Idealized representation of the tested segment of a subway station, as the basis for
structural analysis using beam analysis software: for the numerical values of the point
loads P1, P2, and P3 see Table 2.1.

In a second step, the cross-section of the columns is transformed from its prismatic shape
with dimension 160/240 mm to a circular shape with diameter D = 221.116 mm, equivalent in
extensional stiffness. The expectation of a predominance of axial force at the columns provides
the motivation for performing the transformation of the columns from a rectangular cross-section
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to a circular one with equivalent extensional stiffness. The verification of this transformation
will be discussed in comparison with the results.

In a third step, the reinforced concrete cross-sections of the structure will be idealized as
transformed cross-sections depending on the material behavior of concrete as defined in Eqs (3.25)
and (3.31). This reads as

Atr = A + (nE − 1) As ,

with nE = Es

Ec
= 5.838 ,

Itr = I + Is (nE − 1) +
L

j=1
As,j z2

s,j nE ,

(3.48)

where A denotes the real area defined as A = Ac + As and I denotes the real second moment of
inertia defined as I = Ic + Is. The “transformed” cross-sectional properties are input for the
beam analysis software RStab [8]. This requires the quantification of ratio factors defined as

ηA = Atr

A
, ηI = Itr

I
. (3.49)

The ratio factors of each part of the structure as defined in Eq. (3.49) are documented in Table 3.1,
see also [7] and Section 2.2. Material properties that are required for simulation with beam

Tab. 3.1: Cross-sectional properties of the structural elements: “transformed properties” refer to
a cross-section consisting of concrete only, but being equivalent to the actual reinforced
concrete cross-section, “real properties” refer to the actual concrete part of the actual
cross-section, “ratio factors” are defined in Eq. (3.49)

cross-section transformed property real property ratio factors
Atr [mm2], Itr [mm4] A [mm2], I [mm4] [-], see Eq. (3.49)

Top Slab Atr = 2.684 × 105 A = 2.520 × 105 ηA = 1.065
Itr = 1.037 × 109 I = 9.261 × 108 ηI = 1.120

Bottom Slab Atr = 2.411 × 105 A = 2.280 × 105 ηA = 1.058
Itr = 7.529 × 108 I = 6.859 × 108 ηI = 1.098

Lateral Wall Atr = 2.279 × 105 A = 2.100 × 105 ηA = 1.085
Itr = 6.073 × 108 I = 5.359 × 108 ηI = 1.133

Columns Atr = 4.387 × 104 A = 3.840 × 104 ηA = 1.143
Itr = 1.388 × 108 I = 1.173 × 108 ηI = 1.183

analysis software RStab [8] based on the simulation with FE software ABAQUS CAE in [7] are
documented in Tables 2.2 and 2.3.



Chapter 4

Results and discussion
The structural behavior of a segment of a subway station, subjected to (i) mechanical loading
simulating ground pressure and (ii) thermal loading representative for a moderate fire, see
Chapter 2 and [7, 21] for details, is analyzed with methods from engineering thermoelasticity.
The analysis starts with simulating transient heat conduction from the heated inner surfaces into
the volume of the structural elements.

4.1 Results from the simulation of heat conduction
The transient heat conduction problem described in Section 3.1 is solved by inserting the
thermal properties of concrete from Table 2.2 and the surface temperature histories illustrated
in Fig. 2.5 into the derived semi-analytical solutions, see Eqs. (3.8) and (3.13). The infinite
sums are approximated based on the first 1000 terms. This is more than sufficient to obtain a
well-converged solution. The obtained results are illustrated as solid lines in Fig. 4.1. They are
compared with results from the FE simulation by Diaz et al. [7], see the dashed lines in Fig. 4.1.

For the slabs and the walls, similar results are obtained, see Figs. 4.1a–c. During half an hour
of heating, the heat front penetrates into the inner half of the structural elements, while the
temperature in the outer half remains in good approximation equal to the initial value. The
increase of the temperature suggested by the FE model is slightly larger than that obtained with
the engineering mechanics model. The temperature distribution obtained with the engineering
mechanics model is smooth, while the one from the FE simulation is piecewise linear.

As for the columns, a direct comparison of results obtained from the FE analysis (prismatic
cross-section) with results obtained from the engineering mechanics model (idealized circular
cross-section) is made feasible based on normalized coordinates:

zn = z

h
, zn = y

b
, zn = r

R
, (4.1)

where zn denotes the normalized coordinate, y and z stand for the Cartesian coordinates of the
prismatic cross-section of the actual columns with width b = 240 mm and height h = 160 mm,
and r is the radial coordinate of the cylindrical cross-section of the idealized column with
radius R = 110.6 mm, see also Fig. 4.1d. The FE simulation and the engineering mechanics
analysis deliver similar results which are qualitatively similar, but quantitatively different. The
increase of temperature at the axis of the columns, predicted by the FE model, amounts to
44◦C. The corresponding results of the engineering mechanics model is equal to 14.5◦C. This
is a consequence of the cross-sectional transformation. The ingress of heat into the cylindrical
column is axisymmetric; the distance from the surface to the center is uniform and amounts
to 110.6 mm. As for the actual column with prismatic cross-section, in turn, heat transport is
biaxial problem, and the distance from the closer lateral surface to the center amount to 80 mm.
Therefore, the center of the prismatic cross-section heats up faster than that of the circular one.
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Fig. 4.1: Temperature changes half an hour after the start of the fire of (a) the top slab, (b) the
bottom slab, (c) the left wall, and (d) the left column, obtained with the engineering
mechanics analysis, see the solid lines, and with the FE model, see the dashed and
dash-dotted lines.

4.2 Decomposition of thermal eigenstrains
In order to compute thermal eigenstrains for all structural elements, the temperature changes
illustrated in Figs. 4.1 are multiplied with the coefficients of thermal expansion of steel and
concrete; see the dotted red lines in Figs. 4.2 for the eigenstrain distributions experienced by
concrete. These spatially nonlinear distributions are subdivided into (i) a constant part, related
to the eigenstretch, εe

0, of the axis of the structural element, see Eq. (3.26) and (3.27) as well as
the blue solid lines in Figs. 4.2, (ii) a linear part, related to the eigencurvature, κe

0, of the axis of
the structural element, see Eqs. (3.32) and (3.33) as well as the blue dashed lines in Figs. 4.2,
and (iii) the nonlinear rest, representing the thermal eigenwarping of the cross-section of the
structural element:

εe
w = αT ΔT − εe

0 − κe
0 z , (4.2)

and the dash-dotted blue lines in Figs. 4.2. The numerical values of the eigenstretches and
eigencurvatures are listed in Table 4.1.
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Fig. 4.2: Thermal eigenstrains of concrete half an hour after the start of the fire of (a) the top
slab, (b) the bottom slab, (c) the left wall, and (d) the left column, obtained with
the engineering mechanics analysis: the dotted graphs refer to total eigenstrains, the
solid graphs to the eigenstretch, the dashed graphs to the eigencurvature, and the
dash-dotted graphs to the eigenwarping of the cross-section of the structural element.

Tab. 4.1: Numerical values of the thermal eigenstretches and eigencurvatures of the axes of
the structural elements, half an hour after the start of the fire, obtained with the
engineering mechanics approach, see Eqs. (3.27) and (3.33).

Cross-section Eigenstretch Eigencurvature
[10−4] [10−6 mm−1]

Top Slab εe
0 = 1.1848 κe

0 = 2.4632
Bottom Slab εe

0 = 1.2860 κe
0 = 2.8946

Lateral Wall εe
0 = 1.1362 κe

0 = 2.7662
Columns εe

0 = 12.5200 κe
0 = 0.0000
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4.3 Structural analysis using beam analysis software
Two simulations are carried out. The first one refers to the point loads representing ground
pressure. This simulation provides insight into the structural behavior before the start of the fire.
The second simulation refers to the point loads representing ground pressure and eigenstretches
as well as eigencurvatures representing the thermal loading half an hour after the start of the
fire. The differences of the results of the two simulations, regarding the axial forces and bending
moments, refer to load redistributions resulting from the fire.

4.3.1 Mechanical loading simulating service conditions
The structural model is subjected to point loads P1, P2, and P3, see Table 2.1. The internal
forces obtained with beam analysis software RStab [8] are nearly symmetrical with respect to a
column-parallel axis through the center of the structure, see Figs. 4.3 and 4.4.

The largest absolute values of the bending moments range from 52 kNm to 65 kNm. They are
activated in the top slap, at the connections with the walls and the columns, see Fig. 4.3. The
bending moments of the bottom slab are significantly smaller. Despite the rigid connections
between the columns and the slabs, the bending moments in the columns are almost equal to
zero.

The axial forces are negative and constant throughout every structural element, see Fig. 4.4.
The axial force of the top slab is larger than that of the bottom slab. The largest compressive
axial forces are activated in the columns. This confirms, a posteriori, the assumption that the
axial force would be dominant in the columns. Notably, this assumption provided the motivation
for transforming the rectangular columns into circular ones, such that the extensional stiffness is
the same.

4.3.2 Mechanical and thermal loading representative for a moderate tunnel fire
The structural model is subjected to point loads P1, P2, and P3, see Table 2.1, and to eigenstretches
and eigencurvatures representative for the time instant half an hour after the start of the fire,
see Table 4.1. The internal forces obtained with beam analysis software RStab [8] are nearly
symmetrical with respect to a column-parallel axis through the center of the structure, see
Figs. 4.5 and 4.6.

Because of the fire, the bending moments are significantly increased throughout the structure.
The largest absolute values of the bending moments range from 91 kNm to 166 kNm. They are
activated in the top slap, at the connections with the walls and the columns, see Fig. 4.5. The
bending moments of the bottom slab are also significant, ranging from −61.4 kNm to −78.3 kNm.
Despite the rigid connections between the columns and the slabs, the bending moments in the
columns remain small.

The redistributions of the axial forces is governed by the eigenstretches of the columns, which
are by one order of magnitude larger than the eigenstretches of the walls. Because the expansion
of the columns is constrained, their compressive axial forces rise, during the first half an hour of
the fire, from some −335 kN to some −385 kN. This goes along with a reduction of the axial
forces of the walls from −200 kN to some −150 kNm. In addition, the compressive axial forces of
the top slab are decreased by some 20 kN and redistributed to the bottom slab.
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Fig. 4.3: Bending moments activated by the point loads listed in Table 2.1: simulation results
obtained with RStab.
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bending moment [kNm] at time t = 1800 s

x1

x2

x3

x4

x6

x8 x7

x9

x10

x11 x12

⊖ ⊖

−91.3

−22.3
−59.6

−166.0 −165.6

−59.4−22.9

−92.2

⊖

⊖

−91.3

−36.7

−31.0

−78.3

−7.9 x5⊖

⊕
4.2

7.4
⊕

−3.7
⊖

−92.2

−37.8

−30.0

−77.5

⊖

−78.3
−65.5−61.4

−65.6 −61.8 −77.5

⊖ ⊖ ⊖

−158.0 −158.1

−85.9
−85.9

Fig. 4.5: Bending moments activated by the point loads listed in Table 2.1 and by fire-induced
eigenstretches and eigencurvatures listed in Table 4.1: simulation results obtained with
RStab.
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4.4 Stress distributions at selected cross-sections
Under combined mechanical and transient thermal loading, axial stresses result, in every cross-
section, from three contributions: the axial force, the bending moment, and eigenstresses. In the
present context of reinforced concrete members, we focus on the axial stresses experienced by
the concrete. The axial force refers to spatially constant axial stresses, the bending moment to
spatially linear stresses, and the eigenstresses are nonlinearly distributed across the cross-section.
The axial forces and the bending moments depend on the mechanical loading as well as the
thermal eigenstretches and the eigencurvatures of all structural members. These contributions are
accounted for by means of the simulation with the beam analysis software, see Section 4.3. The
eigenstresses account for the transient nature of the heat conduction problem. They are equal to
the eigenwarping-part of the thermal eigenstrains, multiplied with the modulus of elasticity and
−1. The eigenwarping-parts of the thermal eigenstrains were determined in Section 4.2.

Axial stresses at selected cross-sections will be illustrated, in the following subsections, by
means of two diagrams. The left diagram displays, with blue graphs, the stress distribution σxx,c

of concrete resulting from the point loads only, referring to the service condition before the fire.
The right diagram displays, with red graphs, the stresses of concrete computed for the time
instant half an hour after the start of the fire. In both cases, results from the simulation with
beam analysis software, from the engineering mechanics analysis, and from FE simulation are
compared.

4.4.1 Top slab
As for the top slab, cross-sectional stresses are discussed at the positions x1 to x5, see Fig. 3.3.
In general, the stresses obtained with the FE simulation are well reproduced based on the
engineering mechanics model, both qualitatively and quantitatively, see Figs. 4.7–4.11.
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Fig. 4.7: Top slab location x1 = 0.343 m: axial stresses of concrete (a) before the fire, and (b)
half an hour after the start of the fire.

As for the situation before the fire, the stress distributions obtained from the FE simulation
and from the engineering mechanics analysis are virtually linear and perfectly linear, respectively.
The kink of the stress distributions obtained with the FE model close to the upper surface
at position x2, see Fig. 4.8a, can be explained by the point load P1 imposed at that position.
This underlines that the Bernoulli-Euler hypothesis is questionable in the immediate vicinity of
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Fig. 4.8: Top slab location x2 = 0.468 m: axial stresses of concrete (a) before the fire, and (b)
half an hour after the start of the fire.
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Fig. 4.9: Top slab location x3 = 0.958 m: axial stresses of concrete (a) before the fire, and (b)
half an hour after the start of the fire.

concentrated loads. Still, the engineering mechanics analysis is reproducing the overall structural
behavior very well.

As for the time instant half an hour after the start of the fire, the total stresses are nonlinearly
distributed over the height of the cross-section. It is appealing that the engineering mechanics
analysis allows for a decomposition of the total stresses into (i) spatially linear stress contributions
resulting from the axial forces and the bending moments, as well as (ii) spatially nonlinear stress
contributions resulting from the prevented eigenwarping of the cross-sections, see the similarity
between the dash-dotted graphs in Fig. 4.2 and the dashed red graphs in Figs. 4.7b–4.11b. Both
simulation approaches suggest that the maximum tensile stresses are activated inside the volume
of the top slab rather than at the upper or lower surface. These tensile stresses amount to some
3 MPa. It is to be expected that the tensile strength of concrete would be reached shortly during
the third quarter of an hour after the start of the fire, and that cracking of concrete will occur
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Fig. 4.10: Top slab location x4 = 1.088 m: axial stresses of concrete (a) before the fire, and (b)
half an hour after the start of the fire.
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Fig. 4.11: Top slab location x4 = 2.543 m: axial stresses of concrete (a) before the fire, and (b)
half an hour after the start of the fire.

visually unnoticeable inside the bulk of the top slab. At position x5, the total stresses of the
engineering model are qualitatively similar but quantitatively more compressive and less tensile
compared to those of the FE model, see Fig. 4.11b. This implies that the differences originates
from the constant part of the stresses, i.e. from the compressive axial force of the top slab, which
is larger in the engineering mechanics model than in the FE model.

4.4.2 Bottom slab
As for the bottom slab, cross-sectional stresses are discussed at the positions x6 to x8, see
Fig. 3.3. In general, the stresses obtained with the FE simulation are well reproduced based on
the engineering mechanics model, both qualitatively and quantitatively, see Figs. 4.12–4.14.
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Fig. 4.12: Bottom slab location x6 = 2.543 m: axial stresses of concrete (a) before the fire, and
(b) half an hour after the start of the fire.
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Fig. 4.13: Bottom slab location x7 = 1.361 m: axial stresses of concrete (a) before the fire, and
(b) half an hour after the start of the fire.

As for the situation before the fire, the bottom slab experiences smaller axial forces and smaller
bending moments than the top slab, see Figs. 4.3 and 4.4. This manifests itself in smaller stresses
at positions x6 to x8 compared to the stresses at positions x1 to x5, see Figs. 4.7a–4.14a.

As for the time instant half an hour after the start of the fire, the effect described at position
x5 of the top slab is also found at positions x6 and x7 of the bottom slab: the stress distributions
of the engineering mechanics model and the FE model appear to be quite parallel, whereby more
compressive and less tensile stresses are obtained with the engineering mechanics model, compare
Fig. 4.11b with Figs. 4.12b and 4.13b. At position x8 the engineering mechanics model suggest
larger compressive stresses at the bottom surface, correct stresses at the axis of the structural
element, and smaller tensile stresses at the top surface, compared to the FE model. Thus, the
difference appears to be related to the linear part of the stress distribution, which is related to
the bending moment. Most importantly, the maximum tensile stress obtained in both approaches
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Fig. 4.14: Bottom slab location x8 = 0.478 m: axial stresses of concrete (a) before the fire, and
(b) half an hour after the start of the fire.

are very similar at all three analyzed positions. This is particularly important for the question
whether or not tensile cracking of concrete occurs.

4.4.3 Left wall
As for the left wall, cross-sectional stresses are discussed at the positions x9 to x11, see Fig. 3.3.
In general, the stresses obtained with the FE simulation are well reproduced based on the
engineering mechanics model, both qualitatively and quantitatively, see Figs. 4.15–4.17. Most
importantly, the maximum tensile stress obtained in both approaches are very similar at all
three analyzed positions, half an hour after the start of the fire, see Figs. 4.15b–4.17b. This is
particularly important for the question whether or not tensile cracking of concrete occurs.
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Fig. 4.15: Left wall location x9 = 0.275 m: axial stresses of concrete (a) before the fire, and (b)
half an hour after the start of the fire.
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Fig. 4.16: Left wall location x10 = 0.335 m: axial stresses of concrete (a) before the fire, and
(b) half an hour after the start of the fire.
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Fig. 4.17: Left wall location x11 = 0.845 m: axial stresses of concrete (a) before the fire, and
(b) half an hour after the start of the fire.

4.4.4 Left column
As for the left column, cross-sectional stresses are discussed at the position x12, see Fig. 3.3. The
stresses obtained with the FE simulation are well reproduced based on the engineering mechanics
model, both qualitatively and quantitatively, see Fig. 4.18.

As for the situation before the fire, the stress distribution is almost constant throughout the
cross-section, see Fig. 4.18a. The stress level obtained with the engineering mechanics model is
virtually the same as the one obtained with the FE model. This underlines that the idealization
of the prismatic column as a cylindrical one with equivalent extensional stiffness is verified for
the load case referring to the point loads.

As for the time instant half an hour after the start of the fire, the total stresses agree
qualitatively quite well, see Fig. 4.18b. Still, the maximum of the compressive stresses, at the
outer contour of the column, is larger in the engineering mechanics analysis, and the maximum of
the tensile stresses, at the center of the column, is larger in the FE analysis. One could speculate
that this difference is related to the constant part of the stress distribution and, therefore, to the
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Fig. 4.18: Left column location x12 = 0.845 m: axial stresses of concrete (a) before the fire, and
(b) half an hour after the start of the fire.

axial force. In this context, it is noteworthy that the average temperature rise is larger in the FE
model, see Fig. 4.1. Consequently, the thermal eigenstretch of the column is larger in the FE
model, and this results in a compressive axial force of the column, which is larger in the FE model
than in the engineering mechanics approach. This goes hand in hand with more compressive
stresses and less tensile stresses in the FE model, but the opposite effect is observed in the
total stress distributions, see Fig. 4.1. The reason for this nontrivial result can be explained as
follows. Larger compressive axial stresses in the FE model, resulting from the larger compressive
axial force, are overcompensated by the nonlinear part of the total stresses, i.e. by the thermal
eigenstresses resulting from the prevented eigenwarping of the cross-section of the column. In
this context, it is illustrative to return to the temperature changes obtained with the FE model
and with the engineering mechanics model, see Fig. 4.1. The temperature difference between
the heated lateral surface of the column and its axis is larger in the engineering mechanics
analysis. Thus, the eigenwarping is larger in the engineering mechanics analysis, and thus, the
self-equilibrated spatially nonlinear stress contribution is larger in the engineering mechanics
model than in the FE model. These eigenstresses are compressive at the lateral surface of the
column and tensile at its axis. This explains the differences between the total stresses illustrated
in Fig. 4.18b.

The tensile stresses in the region around the axis of the column, obtained by means of the two
used thermoelastic simulation methods, are several times larger than the characteristic tensile
strength of concrete, see Fig. 4.18b. This underlines that tensile cracking of concrete in the core
of the column has very likely occurred unnoticed during the fire test.

4.5 Thermo-elasto-brittle engineering analysis: tensile cracking of
the core regions of the columns

In order to account for tensile failure inside the core regions of the two columns, the engineering
mechanics analysis is extended towards consideration of brittle failure of concrete. To this end,
it is assumed that the innermost region of the columns, with a radius amounting to 70 mm fails
due to tensile cracking of concrete. As regards the extensional stiffness of the columns, the
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crack-affected core region must be deactivated, causing a reduction of the effective extensional
stiffness by some 34.6 %, see Table 4.2.

Tab. 4.2: Properties of the columns used for thermo-elastic analysis and for thermo-elasto-brittle
analysis, respectively.

property without cracking with cracking
transformed cross-sectional area [mm2] Atr = 43871.6 Atr = 28680.0
extensional stiffness [kN] EcAtr = 1465311 EcAtr = 957912
eigenstretch [10−4] εe

0 = 12.52 εe
0 = 12.86

axial force [kN] N = −383.8 N = −374.7

Results of the heat conduction analysis illustrated in Fig. 4.1d remain valid, because the cracks
propagate in planes orthogonal to the axis of the columns. In the material volumes between
neighboring cracks, heat transfer takes place in radial direction, in an undisturbed fashion.

The spatial distribution of the thermal eigenstrains remains valid. However, the tensile
eigenstrains in the cracked core region are now free to develop: they reduce the crack opening
widths, but activate no stresses. Thus, the thermal eigenstrains in the cracked core region do not
affect the structural behavior.

The numerical value of the eigenstretch of the columns must be updated. It is computed
based on the thermal eigenstrains prevailing in the intact outer region of the columns, leading
to an increased value of the eigenstretch, see Table 4.2. This can be explained as follows. The
temperature in the intact outer part is, on average, higher than the average temperature of the
entire cross-section. The higher average temperature goes along with an, on average, larger value
of the thermal eigenstrains and, thus, a larger value of the eigenstretch, see Fig. 4.19.
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Fig. 4.19: Thermal eigenstrains of concrete half an hour after the start of the fire of the left
column with consideration of tensile cracking of the core region: the dotted graph
refers to total eigenstrains, the solid graph to the eigenstretch and the dash-dotted
graph to the eigenwarping of the cross-section of the column.

The structural simulation based on the beam analysis software is updated. This update
exclusively concerns properties of the columns; the external loads as well as the properties of the
slabs and walls stay the same. The columns, in turn, have a larger thermal eigenstretch and a
smaller extensional stiffness, see Table 4.2. This leads to two competing effects:
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• Because of the larger thermal eigenstretch, the columns are expected to push even stronger
against the top and bottom slabs. This effect tends to increase the compressive axial force
carried by the columns.

• Stiffer elements of a statically indeterminate structure attract a larger share of the load
than less stiff elements. Because of the reduced stiffness of the columns, this effect tends
to redistribute the load towards the stiffer walls, decreasing the compressive axial force
carried by the columns.

Structural analysis with the beam analysis software clarifies that the second effect slightly
outperforms the former: the compressive axial force carried by the columns decreases by some
2% to −374 kN, see Table 4.2. From the viewpoint of the overall structural behavior, the
redistributions of the loads, resulting from tensile cracking of the core of the columns, are rather
insignificant, such that virtually the same distributions of bending moments and axial forces are
obtained, compare Figs. 4.5 and 4.6 with Figs. 4.20 and 4.21.

Finally, it is interesting to discuss the stresses experienced by the intact part of the columns.
Because the compressive axial force decreased slightly, and the cross-sectional area of the columns
decreased significantly, see Table 4.2, the compressive axial stress due to the axial force increases
relative to the simulation without consideration of tensile cracking of concrete. Still, the overall
stresses remain virtually the same, because of increasing eigenstresses of the column, resulting
from the prevented eigenwarping of the remaining intact cross-section of the columns, see Fig. 4.22.

It is concluded that the structural behavior is virtually unaffected by tensile cracking of the
core regions of the columns. It is very likely that the columns were damaged significantly already
during the first half an hour after the start of the fire, and that cracking of concrete occurred
unnoticed.
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Fig. 4.20: Bending moments activated by the point loads and by fire-induced eigenstretches
and eigencurvatures: simulation results obtained with RStab, under consideration of
tensile cracking of the core region of the columns, see also Table 4.2.
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Fig. 4.21: Axial forces activated by the point loads and by fire-induced eigenstretches and
eigencurvatures: simulation results obtained with RStab, under consideration of
tensile cracking of the core region of the columns, see also Table 4.2.
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Fig. 4.22: Left column location x12 = 0.845 m: axial stresses of concrete half an hour after the
start of the fire, with and without consideration of tensile cracking of the core region.



Chapter 5

Summary and conclusions
A reinforced concrete segment of a subway station subjected, in a large-scale laboratory test [21],
to ground pressure and a moderate fire, was analyzed based on an engineering mechanics model, in
order to check whether or not it can reproduce the results from a linear-elastic three-dimensional
Finite Element analysis [7]. The engineering mechanics model was based on the following
idealizations:

• The slabs, walls, and columns of the analyzed structure were modeled by means of Euler-
Bernoulli beams. The resulting frame structure consists of three cells and is statically
indeterminate to the twelfth degree.

• As regards thermal loading of the slabs and walls, the transient heat conduction problems
were idealized to be of one-dimensional nature: from the heated inner surfaces, in thickness
direction, towards their outer surfaces. These problems were solved in a semi-analytical
fashion, leading to series solutions based on trigonometric and exponential functions.

• As regards thermal loading of the columns, their rectangular cross-sections were trans-
formed into circular cross-sections with the same extensional stiffness. This resulted in an
axisymmetric heat conduction problem from the heated lateral surface, in radial direction,
towards the axis of the columns. The solution of this problem was newly derived, leading
to a series solution based on Bessel functions of the first kind and exponential functions.

The load carrying behavior half an hour after the start of the fire was analyzed. The engineering
mechanics approach was organized as follows:

• Temperature changes relative to the uniform initial temperature were multiplied with the
thermal expansion coefficients of steel and concrete, in order to quantify spatially nonlinear
thermal eigenstrains in all structural elements.

• Thermal eigenstrains were subdivided, in the cross-sections of every structural element,
into three parts:

– the eigenstretch of the axis of the structural element,
– the eigencurvature of the axis of the structural element,
– the eigenwarping of the cross-sections of the structural element.

This decomposition is well known for cross-sections consisting of a homogeneous material
[17, 25, 31]. In the present thesis, corresponding decomposition rules were derived for rein-
forced concrete members, extending the range of applicability of the presented engineering
mechanics approach. The derivation combined the Euler-Bernoulli hypothesis, geometric
and constitutive equations of linear thermoelasticity, as well as standard relations between
the axial force and the bending moment, on the one hand, and the axial stresses, on the
other hand.
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• Structural engineering-mechanics analysis was subdivided into two parts.
– The first one referred to the larger scale of the frame structure subjected to mechanical

loads simulating ground pressure as well as the thermal eigenstretches and eigencurva-
tures of the structural elements. This problem was solved based of the linear theory
of slender straight beams, using the beam analysis software RStab. This analysis
delivered distributions of axial forces and bending moments.

– The second part referred to the smaller scale of the cross-sections where thermal
eigenstresses are activated. The latter were computed from the eigenwarping-part of
the thermal eigenstrains, which is prevented because the cross-sections remain plane
even under combined mechanical and thermal loading. Thus, the eigenstresses can be
computed by multiplying the eigenwarping-part of the eigenstrains by the negative
modulus of elasticity.

• Axial stresses resulting from the two parts of the structural engineering-mechanics analysis
were superimposed. The resulting stress distributions were found to agree well with axial
stresses obtained from the aforementioned Finite Element simulation.

From the described thermo-elastic analysis, it was concluded that concrete cracked in the core
regions of the columns, in the immediate vicinities of their axes. This was the motivation to
extend the thermo-elastic analysis to a thermo-elasto-brittle analysis.

From the described analysis, several conclusions are drawn. The first set of conclusions refers
to the question whether or not spatially nonlinear temperature fields, which are a characteristic of
transient heat conduction problems, can be translated into statically equivalent linear temperature
fields.

• Transient heat conduction orthogonal to the axis of a reinforced concrete beam is associated
with spatially nonlinear distributions of thermal eigenstrains inside individual cross-sections.
The nonlinear part of the eigenstrains represents an eigenwarping of the cross-sections.
The latter remain plane in slender beams, even in case of transient heat conduction. This
planarity is related to spatially linear total strains. Thus, the spatially nonlinear part of
the thermal eigenstrains is prevented at the scale of the cross-sections, i.e. it is nullified by
stress-related mechanical strains of identical size and distribution but opposite mathematical
signs. Because the resulting thermal eigenstresses have a vanishing mean value and a
vanishing first moment, they are “self-equilibrated”, i.e. they do neither contribute to the
axial force nor to the bending moment.

• Subtracting from the total thermal eigenstrains the nonlinear part, results in eigenstrains
which are related to the thermal eigenstretch and the thermal eigencurvature of the axis
of the beam analyzed. Whether eigenstretch and eigencurvature are free to develop,
constrained, or prevented must be answered at the scale of the entire structure. They
are free to develop in statically determinate structures. They are at least constrained in
statically indeterminate structures.

• Because eigenstretches and eigencurvatures are constrained at the larger scale of a statically
indeterminate reinforced concrete structure, and because the eigenwarping is prevented
at the smaller scale of the cross-sections, it is impossible to translate spatially nonlinear
temperature fields into statically equivalent linear temperature fields.

The second set of conclusions refers to the potential of the relatively simple (yet not triv-
ial) engineering-mechanics approach, regarding the reproduction of results obtained with a
computationally much more expensive three-dimensional Finite Element model.
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• Commercially available beam analysis software is typically capable of accounting for
eigenstretches and eigencurvatures. This allows for computing axial forces and bending
moments as well as the related axial stresses which are linear functions within the individual
cross-sections. Adding to these stress fields the spatially nonlinear thermal eigenstresses
resulting from the prevented eigenwarping of the cross-sections delivers total stresses which
are in good agreement with the results from the elaborate Finite Element model.

• FE analyses intrinsically suffer from a discretization error. Its quantification requires
convergence analyses, i.e. the same problem must be solved based on different Finite
Element meshes, and important output quantities are illustrated as a function of the
discretization effort, in order to find a trade-off between discretization effort and reliability
of the results obtained. Such convergence analyses require a significant amount of time,
given that pre-processing of FE simulations frequently represents a large (if not the
dominating) part of the time investments required for the overall analysis. The remaining
discretization error manifests itself in frequently kinky rather than smooth distributions of
output quantities.

• Discretization is also a topic of the developed engineering-mechanics approach, because the
series solutions of the transient heat conduction problems involve infinite sums which must
be truncated. Still, these series converge fast, and modern software products for numerical
mathematical calculus allow for their efficient evaluation. Herein, the infinite sums were
very reliably approximated based on the first 1000 summands.

• Rectangular columns were transformed into equivalent circular ones displaying the same
extensional stiffness. This was beneficial, because a rather challenging two-dimensional
heat conduction problem was converted into a much simpler one-dimensional one. Both the
obtained distributions of temperature and axial stresses were predicted with satisfactory
accuracy.

The third set of conclusions refers to lessons learned regarding the structural behavior of the
analyzed segment of a subway station subjected to combined mechanical and thermal loading:

• The developed engineering mechanics approach is subdivided into a sequence of several
smaller problems. This organization allows for relating causes to effects in a much more
clear and intuitive fashion compared to an all-in-one simulation approach such as the Finite
Element Method.

• Tensile stresses were found in all structural elements, despite the compressive loading
simulating ground pressure. The locally largest tensile stresses are activated close to the
axis (or the midplane) of the structural elements. Thus, tensile cracking starts inside the
volume of the structural elements rather than visibly either at the inner or the outer surface.
This renders structural inspection after non-catastrophic fire events a difficult task.

• Half an hour after the start of the fire, the columns are the most heavily stresses structural
elements, because their temperature gradients were much larger than in the slabs and walls.

• Large tensile stresses were the motivation to extend the thermo-elastic approach to a
thermo-elasto-brittle approach. Changes of the overall structural behavior of the frame
structure, resulting from tensile cracking inside the columns, are governed by the nontrivial
competition of the increased thermal eigenstretch and the decreased extensional stiffness of
the columns.
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• Because tensile cracking of the columns does not induce significant redistributions of the
loads, tensile cracking will have occurred unnoticed in the experiment.

Overall, it is concluded that the developed mode of thermo-elastic analysis is valuable at least
for pre-dimensioning purposes, because it provides interesting insight into nontrivial aspects of
the structural behavior. Still, the current limitations of the presented engineering mechanics
analysis shall also be addressed:

• Because a moderate fire was analyzed, mechanical properties of concrete were treated as
constants and set equal to values at room temperature. In the future, these constants can
be replaced by functions of temperature. Such mathematical relationships are provided by
many codes for the design of reinforced concrete structures.

• The simulation with beam analysis software is based on the Euler-Bernoulli hypothesis. The
latter is questionable, e.g. in the immediate vicinity of connections of different structural
elements and of point loads. In order to gain detailed insight into stress distributions in
such regions, Finite Element simulations appear to be indispensable.
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Appendix A

Radial heat conduction
The derivation of the solution of the radial heat conduction problem in Eq. (3.10) will be described
in a step-by-step fashion in this part of the appendix. The first step is to write down the problem
for cylindrical coordinates. The second step refers to the solution of the heat equation subdivided
into a steady and a transient part of heat conduction. This will be done for constant initial and
time-independent boundary conditions. To consider the time-dependent boundary conditions
described in Chapter 3 the elementary solutions will be superimposed at the third step. At last
the solutions will by verified to a column modeled with ABAQUS CAE [6].

A.1 Heat conduction specified for cylindrical coordinates
Rewriting the general form of the heat conduction problem in case of isotropic heat conduction
properties from Eq. (3.2) reads as

Ṫ − a ∇ · (I · ∇T ) = 0 . (A.1)

Herein, a denotes the thermal diffusivity, I = 3
i=1 ei ⊗ ei denotes the second order identity

tensor, T = T (x) denotes the temperature distribution, and ∇ denotes the nabla operator for
cylindrical coordinates (r,ϕ,z). The transposed nabla operator ∇T is defined as

∇T = ∂

∂r
,

1
r

∂

∂ϕ
,

∂

∂z
. (A.2)

Inserting Eq. (A.2) into Eq. (A.1) yields the general form of the heat conduction problem for a
cylindrical coordinate system, as

∂T

∂t
= a

1
r

∂

∂r
r

∂T

∂r
+ 1

r

∂

∂ϕ

1
r

∂T

∂ϕ
+ ∂

∂z

∂T

∂z
,

= a
∂2T

∂r2 + 1
r

∂T

∂r
+ 1

r2
∂2T

∂ϕ2 + ∂2T

∂z2 . (A.3)

In Eq. (A.3) the expression on the right side of the equal sign represents the spatial distribution
heat flux. In case of heat conduction only in radial direction, the heat flux which depends only
on the directions ϕ and z is equal to zero. Thus, the radial heat conduction problem with
temperature T = T (r, t) reads as

∂T

∂t
= a

∂2T

∂r2 + 1
r

∂T

∂r
. (A.4)
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A.2 Semi-analytical solution for radial heat conduction
The derivation of the solution of the radial heat conduction problem in Eq. (A.4) refers to a
circular cross-section with radius R. At the beginning (t = 0) the temperature is equal to the
reference temperature Tref at the whole cross section. At the lateral surface a time-independent
temperature T lat is prescribed. In this case the initial condition and the boundary condition for
one temperature step can be written as:

T (r, t = 0) = Tref initial condition, (A.5)

T (r = R, t) = T lat constant boundary condition at
the surface for one increment. (A.6)

Because of the linearity of the partial differential equation (A.4) the superposition principle
applies. Thus, the solution of the heat equation can be subdivided into two subproblems. The
first subproblem (index s) refers to the steady part and the second subproblem (index t) refers to
the transient part of the heat equation. Superposition of both parts yields the total temperature
distribution in radial direction T = Ts + Tt. Specializing Eq. (A.4) for the steady part of heat
conduction reads as

∂Ts

∂t
= a

∂2Ts

∂r2 + 1
r

∂Ts

∂r
with ∂Ts

∂t
= 0 . (A.7)

Eq. A.7 can be integrated in two steps as described in literature [16]. This leads to

Step 1: 1
r

∂

∂r
r

∂Ts

∂r
= 0 ⇒ ∂

∂r
r

∂Ts

∂r
dr

r· ∂Ts
∂r

= A,

Step 2: ∂Ts

∂r
dr = A

1
r

dr , ⇒ Ts = A ln(r) + B . (A.8)

where A and B denote the integration constants. This solution can be valid for solid cylinders only
if the coefficient A is equal to zero. Inserting the boundary condition in Eq. (A.6) into the result
from Eq. (A.8) yields the steady part of the radial heat conduction problem as Ts = B = T lat.
Considering Eqs. (A.5) and (A.6) in addition to the steady part of the heat conduction problem
leads to the the initial condition and boundary condition of the the second subproblem, which
reads as 


T (r, t)

T (r, t = 0) = Tref

T (r = R, t) = T lat


 =




Ts + Tt

T lat + Tref − T lat

T lat + 0


 . (A.9)

The second subproblem denoting a transient heat conduction problem given in Eq. (A.4) will be
solved by using the technique of separation of variables for partial differential equations:

Tt(r, t) = f(r) g(t) . (A.10)
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Inserting Eq. (A.10) into Eq. (A.4) and moving terms depending on t to the left side of the equal
sign and terms depending on r to the right side leads to

dg(t)
dt

ag(t) =
d2f(r)

dr2 + 1
r

df(r)
dr

f(r) = −λ2 →
dg(t)

dt + aλ2g(t) = 0
d2f(r)

dr2 + 1
r

df(r)
dr + λ2f(r) = 0

. (A.11)

Herein, λ denotes the eigenvalue of the field equation and will be defined subsequently. The
time-dependent differential equation in Eq. (A.11) will be solved by formulating exponential laws.
This yields

g(t) = Â exp(−λ2at) , (A.12)

where Â denotes a auxiliary coefficient. The spatial-dependent expression in Eq. (A.11) denotes
a partial differential equation with variable coefficients, also known as Bessel’s differential
equation [16].

Excursus: Bessel’s differential equations

The general form of Bessel’s differential equation is based on classical Sturm–Liouville theory
and reads as

x2 d2f(x)
dx2 + x

df(x)
dx

+ (x2 − ν2)f(x) = 0 ∀ ν ∈ R . (A.13)

Herein, x denotes the argument and ν denotes the order of Bessel’s differential equation. The
solution of Eq. (A.13) can be gained with infinite power series with coefficients ak:

f(x) = xν
∞

k=0
ak xk. (A.14)

Inserting the expression of the power series in Eq. (A.14) into Eq. (A.13) leads to the solution
of Bessels’ differential equation, also known as the Bessel function of the first kind Jν(x) with
order ν. This reads as

Jν(x) = x

2

ν ∞

k=0

(−1)k

Γ(k + 1) Γ(ν + k + 1)
x

2

2k

. (A.15)

Herein, Γ denotes the Gamma function, which is necessary to define the solution to all ν ∈ R. It
is noteworthy at this point that the coefficients ak are uniformly convergent. Due to the classical
Sturm–Liouville theory the eigenvalues of the Bessel function of the first kind Jν(x) have the
following characteristics:

• All eigenvalues are real.

• Eigenfunctions of different eigenvalues are orthogonal.

• For each eigenvalue there is only one linearly independent eigenfunction.

In order to create a fundamental system for total solution of Bessel’s differential equation, the
Bessel function of the second kind Yν(x) has to be introduced in consideration of the verification
of linear independence:

Yν(x) = cos (νπ) Jν(x) − J−ν(x)
sin (νπ) . (A.16)
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The total solution of Bessel’s differential equation is defined as the linear combination of the
Bessel function of the first kind (see Eq. (A.15)) and the Bessel function of the second kind (see
Eq. (A.16)). This reads as

f(x) = A Jν(x) + B Yν(x) . (A.17)

Expanding the spatial-dependent expression of Eq. (A.11) with r2 yields

r2 d2f(r)
dr2 + r

df(r)
dr

+ (λr)2f(r) = 0 . (A.18)

This expression is equal to Bessel’s differential equation of zeroth-order, see Eq. (A.13). Thus,
the total solution is gained in consideration to Eq. (A.18) as

f(r) = Ã J0(λr) + B̃ Y0(λr) , (A.19)

where J0(λ r) denotes the zeroth-order Bessel function of the first kind, and Y0(λ r) denotes the
zeroth-order Bessel function of the second kind. Ã and B̃ are auxiliary coefficients. Because
second kind Bessel function is unrestricted at the origin with Y0(0) → −∞, the coefficient B̃ has
to be equal to zero to create a solution for the temperature distribution of the whole cross-section.
Inserting the separated solutions in Eqs. (A.12) and (A.19) into Eq. (A.10) yields

Tt(r, t) = A exp(−λ2at)J0(λr) , (A.20)

where A = Â Ã is the total coefficient of the solution that will be quantified by specializing
Eq. (A.20) for the boundary condition. Inserting the boundary condition in Eq. (A.9) into
Eq. (A.20) yields

Tt(r = R, t) = A exp(−λ2at)
=0

J0(λR) = 0. (A.21)

The expression has to be valid for each time t, also for t = 0. Because of this there are two cases
that will be possible to fulfill the equal sign. The first one will create the trivial solution with A
is equal to zero. The second one leads to the eigenvalue problem that reads as

J0(λR) = J0(αn) = 0 with αn = λnR ⇒ λn = αn

R
. (A.22)

Herein, αn are the eigenvalues of the general Bessel function of the first kind with n ∈ N \ {0}.
This eigenvalues can not be determined in an analytical way. Thus, the eigenvalues will be
calculated using an iterative numerical procedure, see Fig. A.1. In order to determine the
eigenvalues of the present heat conduction problem the general eigenvalues αn will be scaled by
the radius R of the cross-section as defined in Eq. (A.22). If an infinite number of coefficients
An exist, which satisfy the boundary conditions, the solution of the transient heat conduction
problem can be written as infinite series of sub-solutions:

Tt(r, t) =
∞

n=1
An exp(−λ2

nat)J0(λnr) . (A.23)
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Fig. A.1: Values of the first nine zero points αn of the general zeroth-order Bessel function of
the first kind with J0(x).

Specializing Eq. (A.23) for the initial condition in Eq. (A.9) leads to an expression for determining
the coefficients An. This reads as

Tt(r, t = 0) =
∞

n=1
AnJ0(λnr) = Tref − T lat . (A.24)

Eq. (A.24) will be extended with J0(λmr) r and m ∈ N \ {0}, and integrated over the radial
direction with limits from zero to R. If An is convergent the sum sign and the integration sign
will change positions. All this leads to

∞

n=1
An

R

0
J0(λnr) J0(λmr) r dr = (Tref − T lat)

R

0
r J0(λmr) dr . (A.25)

The integral on the left side of the equation sign denotes a dot product of two functions.
Specializing this for the cases m = n and m = n yields

J0(λnr), J0(λmr) =
R

0
J0(λnr) J0(λmr) r dr =


R2·(J2

0 (λnR)+J2
1 (λnR))

2 for m = n ,

0 for m = n .
(A.26)

Because of the orthogonality of the Bessel functions of the first kind the dot product in case
m = n is equal to zero. Thus, the integral on the right side of the equation sign is re-written for
m = n:

R

0
r · J0(λnr) dr = R · J1(λnR)

λn
. (A.27)

Inserting Eqs. (A.26) and (A.27) into Eq. (A.26) and specializing for a single coefficient An leads
to

An = 2 (Tref − T lat)
R

1
J1(λnR) λn

. (A.28)
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Thus, the solution of the transient heat conduction can be written as

Tt(r, t) = 2 (Tref − T lat)
R

∞

n=1

1
J1(λnR) λn

J0(λnr) exp(−λ2
nat) . (A.29)

The temperature distribution including the steady part (A.8) and the transient part (A.29) reads
as

T (r, t) = Ts + Tt(r, t) = T lat + 2 (Tref − T lat)
R

∞

n=1

1
J1(λnR) λn

J0(λnr) exp(−λ2
nat) . (A.30)

Rearranging the expressions in Eq. (A.30) considering the general eigenvalues of the Bessel
function of the first kind in Eq. (A.22) leads to a generalized temperature distribution, see
Fig. A.2. This reads as

T (r, t) − T lat

Tref − T lat
= 2

∞

n=1

J0(αn
r
R)

J1(αn) αn
exp(−α2

nτ) = f
r

R
, τ = at

R2 . (A.31)
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Fig. A.2: Generalized temperature distribution plotted at several times τ ; Due to the symmetry
only the positive radial coordinates are displayed;In Eq. (A.31) 1000 terms were
considered.

A.3 Semi-analytical solution for finite temperature steps
Due to the linearity of the heat conduction problem described in Eq. (A.1) the superposition
principle applies. Thus, the elementary solutions derived for one temperature increment will
superimposed for a finite number of temperature steps NT . Therefore, the amount of the
boundary condition for one increment has to be defined as follows:

ΔT lat
k = T lat

k − T lat
k−1. (A.32)
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Herein, T lat
k denotes the present increment and T lat

k−1 denotes the increment before with k =
1, 2, . . . , NT . The temperature at T lat

0 is equal to the reference temperature Tref . Superimposing
the temperature distribution in Eq. (A.30) for NT increments yields

T (r, t) =
NT

k=1
Tk(r, t) = T lat +

NT

k=1

2 (Tref − ΔT lat
k )

R

∞

n=1

J0(λnr)
J1(λnR) λn

exp(−λ2
na t − tk ) . (A.33)

This is the semi-analytical solution of radial heat conduction. The expression in the angled
brackets denotes the Macauley operator defined in Eq. (3.9).

A.4 Code-verification with results from ABAQUS CAE
The semi-analytical solution of the radial heat conduction problem was verified by using
ABAQUS CAE [6]. Therefore, a cylindrical column with uniform boundary conditions in
temperature was simulated at several times during the heating, see Fig. A.3 and Fig. A.4. Thus,
the correctness of the solution was confirmed by comparing the temperature distributions.
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Fig. A.3: Code verification for temperature distribution T (r, t) at time t = 900 s with 15
temperature increments; The steady and transient part of heat conduction are included.
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Fig. A.4: Code verification for temperature distribution T (r, t) at time t = 1800 s with 30
temperature increments; The steady and transient part of heat conduction are included.
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Thermal stresses of radial symmetric reinforced
concrete cross-sections
The thermal eigenstrains, εe, developed at the points r and ϕ inside the cross-section of a
cylindrical column, see Fig. 3.2, are equal to the thermal expansion coefficient evaluated at those
points, αT = αT (r, ϕ), multiplied with the change of temperature, measured relative to the
reference configuration, ΔT (r, t) = T (r, t) − Tref , as:

εe
xx = εe

rr = εe
ϕϕ = αT ΔT . (B.1)

In a transient heat conduction problem, the thermal eigenstrains are spatially nonlinear along the
thickness direction, see e.g., [17, 25, 31]. When it comes to the quantification of thermal stresses,
it must be determined whether the eigenstrains are free to develop, constrained, or prevented.
This is determined partly at the larger, structural level, and partly at the smaller cross-sectional
level. To this end, the spatially nonlinear eigenstrains are subdivided into three parts. They
refer to an eigenstretch of the column, an eigencurvature of the column, and an eigenwarping of
the cross-section. The eigenstretch and the eigencurvature of the axis of the column cause axial
stresses depending on the boundary conditions that constrain the deformation of the structure.
On the other hand, the assumption that plane sections remain plane means that the eigenwarping
of the cross-section of the column is prevented, thus always resulting in nonlinear thermal stresses.
Herein, we focus on radial-symmetric cross-sections with non-uniform modulus of elasticity and
thermal expansion coefficient, E and αT , respectively, assuming a cylindrical coordinate system
with origin at the axis of the column, see Fig. 3.2. The transformation of the Cartesian coordinate
system used for the derivation in Section 3.2 into cylindrical coordinates reads as

y = r cos(ϕ) ,
z = r sin(ϕ) ,
dA = dydz = r drdϕ .

(B.2)

This yields

A

E z dA =
A

E r cos(ϕ) dA = 0 (B.3)

The first step refers to the kinematics of the Euler-Bernoulli theory for slender beams transformed
into cylindrical coordinates:

u = u0 − ∂w0
∂x

z = u0 − ∂w0
∂x

r sin(ϕ) , (B.4)

where u denotes the displacement components in x-direction, at any point within the volume of
the column. u0 and w0 denote the displacement components at the axis of the column. Eq. (B.4)
essentially describes that cross-sections remain plane and normal to the deformed axis of the
beam, also in the deformed configuration (= Euler-Bernoulli hypothesis).
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The second step refers to (“total”) axial strain component εxx of the linearized strain tensor.
It is defined as

εxx = ∂u

∂x
. (B.5)

Inserting Eq. (B.4) into Eq. (B.5) yields

εxx = ∂u0
∂x

− ∂2w0
∂x2 r sin(ϕ) . (B.6)

Eq. (B.6) is usually reformulated in terms of the stretch of the axis of the column, ε0 = ∂u0/∂x,
and its curvature, κ0 = −∂2w0/∂x2. This yields

εxx = ε0 + κ0 r sin(ϕ) . (B.7)

The third step refers to axial stress component σxx of Cauchy’s stress tensor. In thermoelasticity,
it reads as

σxx = E (εxx − εe
xx) . (B.8)

Inserting Eqs. (B.1) and (B.7) into (B.8) yields

σxx = E ε0 + κ0 r sin(ϕ) − αT ΔT . (B.9)

where the modulus of elasticity is a function of the r- and ϕ-coordinates which describe points
inside the cross-sections of the column, i.e. E = E(r, ϕ).

The fourth step refers to axial force N . It is energetically conjugate to the displacements u0
and read as

N =
A

σxx dA . (B.10)

Inserting Eq. (B.9) into (B.10) yields under consideration of (B.3):

N =
A

E ε0 + κ0 r sin(ϕ) − αT ΔT dA ,

=
A

E dA

EA

ε0 −
A

E αT ΔT dA

EA εe
0

,

= EA ε0 − εe
0 . (B.11)

Eq. (B.11) is the motivation to introduce the effective extensional stiffness of the column as

EA =
A

E dA . (B.12)

In the case of a reinforced concrete columns, EA can be rewritten as

A

E dA =
Ac

Ec dA +
As

Es dA = EcAc + Ec
Es

Ec

nE

L

j=1
As,j = Ec Ac + nE

L

j=1
As,j

Atr

, (B.13)
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where nE refers to the ratio between the modulus of elasticity of steel, Es, and concrete, Ec, j
refers to each one of the L individual steel reinforcement bars existing within the cross-section,
and Atr = Ac + nE

L
j=1 As refers to the total area of the “transformed” section with Ac denotes

the area of concrete and As denotes the area of steel. Thus, one can conclude from Eq. (B.11)
that the eigenstretch of the axis of the column is calculated as

εe
0 = 1

EA
A

E αT ΔT dA , (B.14)

which in case of a concrete column that presents a constant temperature in each reinforcement
bar, considering Eqs. (3.24) and (3.25), leads to

εe
0 = 1

EA


Ac

Ec αT,c ΔT dA +
L

j=1
Es αT,s ΔTj As,j

 ,

= 1
Ec Atr

Ec


Ac

αT,c ΔT dA + nE

L

j=1
αT,s ΔTj As,j

 ,

= 1
Atr

αT,c

Ac

ΔT dA + nE

L

j=1
αT,s ΔTj As,j

 , (B.15)

where αT,c is the thermal expansion of concrete and αT,s is the thermal expansion of steel. In the
case of uniform heating at the lateral surface of the column as described in Appendix A under
consideration of the definition of temperature changes ΔT the integral in Eq. (B.15) leads to:

Ac

ΔT dA =
Ac

ΔT lat +
NT

k=1

2(Tref − ΔT lat
k )

R

∞

n=1

1
J1(λnR)λn

An

J0(λnr) exp(−λ2
na t − tk ) dA,

= ΔT lat

Ac

dA

Ac

+
NT

k=1

2(Tref − ΔT lat
k )

R

∞

n=1
An exp(−λ2

na t − tk )
Ac

J0(λnr)dA,

= ΔThot,k Ac +
NT

k=1

2(Tref − ΔT lat
k )

R

∞

n=1
An exp(−λ2

na t − tk )
2π

0

R

0

J0(λnr) r drdϕ

2 R π J1(λnR)
λn

,

= Ac ΔT lat +
NT

k=1

4(Tref − ΔT lat
k )

R2

∞

n=1

1
λ2

n

exp(−λ2
na t − tk ) . (B.16)
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Inserting Eq. (B.16) into Eq. (B.15) leads to the eigenstretch of the radial-symmetric reinforced
concrete column, read as

εe
0 = αT,c

Ac

Atr
ΔT lat +

NT

k=1

4(Tref − ΔT lat
k )

R2

∞

n=1

1
λ2

n

exp(−λ2
na t − tk ) (B.17)

+ nE αT,s

L

j

As,j

Atr
ΔTj .

The fifth step refers to bending moment M . It is energetically conjugate to the cross-sectional
rotation ∂w0/∂x and reads as

M =
A

σxx z dA =
A

σxx r sin(ϕ) dA , (B.18)

Inserting Eq. (B.9) into (B.18) yields under consideration of (B.3):

M =
A

E ε0 + κ0 r sin(ϕ) − αT ΔT r sin(ϕ) dA ,

=
A

E r2 sin2(ϕ) dA

EI

κ0 −
A

E αT ΔT r sin(ϕ) dA

EI κe
0

,

= EI κ0 − κe
0 . (B.19)

Eq. (B.19) is the motivation to introduce the effective bending stiffness of the column as

EI =
A

E r2 sin2(ϕ) dA . (B.20)

In the case of a reinforced concrete column, EI can be rewritten as

A

E r2 sin2(ϕ) dA =
Ac

Ec r2 sin2(ϕ) dA +
As

Es r2 sin2(ϕ) dA ,

= EcIc + Ec
Es

Ec

nE

L

j=1
As,j r2

s,j sin2(ϕ) , (B.21)

= Ec Ic + nE

L

j=1
As,j r2

s,j sin2(ϕ)

Itr

, (B.22)

where Itr = Ic + nE
L
j=1 As,j r2

s,j sin2(ϕ) refers to the second moment of inertia of the “trans-
formed” cross section, ϕ denotes the reference axis for parallel axis theorem, and rs,j refers
to the distance between each individual reinforcement bar/layer and the reference axis. The
eigencurvature of the axis of the column is calculated according to Eq. (B.19) as

κe
0 = 1

EI
A

E αT ΔT r sin(ϕ) dA . (B.23)
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which in the case of a reinforced concrete column that presents a constant temperature within
each reinforcement bar, considering Eqs. (B.22) and (B.23), leads to

κe
0 = 1

EI


Ac

Ec αT,c ΔT r sin(ϕ) dA +
L

j=1
Es αT,s ΔTj As,j r2

s,j sin2(ϕ)

 ,

= 1
Ec Itr

Ec


Ac

αT,c ΔT r sin(ϕ) dA + nE

L

j=1
αT,s ΔTj As,j r2

s,j sin2(ϕ)

 ,

= 1
Itr


Ac

αT,c ΔT r sin(ϕ) dA + nE

L

j=1
αT,s ΔTj As,j r2

s,j sin2(ϕ)

 . (B.24)

According to the symmetry of the radial heat conduction problem described in Appendix A and
the uniform temperature at the lateral surface of the column the eigencurvature of the axis, κe

0, is
equal to zero. Thus, the completed derivation underlines that the spatially nonlinear eigenstrain
distribution, αT ΔT , of columns with uniform heating at the lateral surface can be decomposed
into two contributions:

αT ΔT = εe
0 + εe

w , (B.25)

In Eq. (B.25), εe
0 denotes a spatially constant contribution according to Eq. (B.14), representing

an eigenstretch of the beam; and εe
w denotes the spatially non-linear rest of the eigenstrain

distribution, representing an eigenwarping of the cross-section of the beam.
Thermal stresses are derived as follows: Under consideration of κe

0 = 0, Eqs. (B.11) and (B.19)
are rearranged as

ε0 = N

EA
+ εe

0 , (B.26)

κ0 = M

EI
. (B.27)

Inserting Eqs. (B.26) and (B.27) into Eq. (B.9) yields

σxx(r, ϕ) = E(r, ϕ) N

EA
+ εe

0 + M

EI
r sin(ϕ) − αT (r, ϕ) ΔT (r)

= N E(r, ϕ)
EA

+ M E(r, ϕ)
EI

r sin(ϕ) −E(r, ϕ) αT (r, ϕ)ΔT (r) − εe
0

σe
w(r,ϕ)

. (B.28)

Thus, the self-equilibrated stresses resulting from prevented eigenwarping of the cross-section of
a cylindrical reinforced concrete column read as

σe
w(r, ϕ) = −E(r, ϕ) αT (r, ϕ)ΔT (r) − εe

0 . (B.29)

The expression in the square brackets of Eq. (B.29) is equal to the nonlinear part of the eigenstrains,
εe

w, see Eq. (B.25). In the case of uniform heating at the lateral surface of the column as described
in Appendix A and under consideration of the definition of temperature changes ΔT , the self-
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equilibrated stresses resulting from prevented eigenwarping of the cross-section of a cylindrical
reinforced concrete column read as

σe
w(r, ϕ) = E(r, ϕ) ΔT lat αT (r, ϕ) − Ac

Atr
αT,c

+
NT

k=1

4(Tref − ΔT lat
k )

R2

∞

n=1

1
λn

R

2
J0(λnr)
J1(λnR)αT (r, ϕ) − Ac

Atr

αT,c

λn
exp(−λ2

na t − tk )

− nE αT,s

L

j=1

As,j

Atr
ΔTj . (B.30)

Specializing Eq. (B.28) for concrete stresses, under consideration of the modulus of elasticity
E(r, ϕ) = Ec, the thermal expansion coefficient αT (r, ϕ) = αT,c, and Eqs. (B.13) and (B.22),
leads to

σxx,c(r, ϕ) = N

Atr
+ M

Itr
r sin(ϕ) − Ec αT,c ΔT (r) − εe

0

σe
w(r)

, (B.31)

and

σe
w(r) = Ec αT,c ΔT lat 1 − Ac

Atr

+
NT

k=1

4(Tref − ΔT lat
k )

R2

∞

n=1

1
λn

R

2
J0(λnr)
J1(λnR) − Ac

Atr

1
λn

exp(−λ2
na t − tk )

− nE αT,s

L

j=1

As,j

Atr
ΔTj . (B.32)



Appendix C

List of Symbols

symbol meaning
A total area of the cross-section
Ac concrete area
As total reinforcement/steel area
As,j area of one reinforcement bar
Atr area of the transformed cross-section
a thermal diffusivity
αT (x, y), αT (r, ϕ) non-uniform thermal expansion coefficient
αT,c thermal expansion coefficient of concrete
αT,s thermal expansion coefficient of reinforcement/steel
b width of the beam
c specific heat capacity
ΔTj temperature change of the jth reinforcement bar
ΔTk kth temperature step at the surface
ΔT top

k , ΔT bot
k kth temperature step at the top and bottom surface of the beam

ΔT lat
k kth temperature step at the lateral surface of the column

ΔT (z, t) temperature change in Cartesian coordinates, measured relative to Tref

E(x, y), E(r, ϕ) non-uniform modulus of elasticity
Ec modulus of elasticity of concrete
Es modulus of elasticity of reinforcement/steel
EA effective extensional stiffness
EI effective bending stiffness
εxx axial strain component in x-direction
εe

xx, εe
yy, εe

zz eigenstrains in x-, y and z-direction (Cartesian coordinates)
εe

xx, εe
rr, εe

ϕϕ eigenstrains in x-, r and ϕ-direction (cylindrical coordinates)
ε0 stretch of the beam axis
εe

0 thermal eigenstretch of the beam axis
εe

w thermal eigenwarping of the cross-section of the beam
ηA, ηI ratio factors
h height of the beam
I second order identity tensor
I second moment of inertia of a homogeneous cross-section
Ic second moment of inertia of concrete part of the cross-section
Itr second moment of inertia of the transformed cross-section
Jν() νth order Bessel function of the first kind
K second order tensor of thermal conductivity
κ0 curvature of the beam axis
κe

0 thermal eigencurvature of the beam axis
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symbol meaning
L number of reinforcement bars of the cross-section

length of the structural elements
λn eigenvalues of the spatially part of the solution of radial heat conduction
M bending moment
N axial force
NT number of temperature steps
nE ratio between the modulus of elasticity of steel and concrete
∇ nabla operator
P1, P2, P3 point loads
R radius of the column
ρ mass density
σxx axial stress component of Cauchy’s tensor in x-direction
σxx,m axial stresses in x-direction resulting from mechanical loading
σxx,tot total axial stresses in x-direction resulting from mechanical and thermal

loading
σe

w axial stresses resulting from prevented eigenwarping of the cross-section
T bot(t) temperature history at the bottom surface of the beam
T lat(t) temperature history at the lateral surface of the column
T (r, t) temperature variable in cylindrical coordinates
T (z, t) temperature variable in Cartesian coordinates
Tk surface temperature at at the kth step
Tref reference temperature
t time variable
tk simulation time at at the kth temperature step
t − tk Macauley operator

u, w displacement components in x-, and z-direction
x, r, ϕ cylindrical coordinates
x, y, z Cartesian coordinates
Yν() νth order Bessel function of the second kind
zs,j location of the jth reinforcement bar, measured from the beam axis
zn normalized coordinates in z-direction
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